

Trigger

“Keep your eyes on the prize, and your finger on the trigger.”

What is Trigger?

Trigger is a robust network automation toolkit written in Python that was
designed for interfacing with network devices and managing network
configuration and security policy. It increases the speed and efficiency of
managing large-scale networks while reducing the risk of human error.

Key Features

Trigger is designed to work at scale and can support hundreds or thousands of
network devices with ease. Here are some of things that make Trigger tick:

	Support for SSH, Telnet, and Juniper’s Junoscript XML API

	Easily get an interactive shell or execute commands asynchronously.

	Leverage advanced event-driven functionality to manage any number of
jobs in parallel and handle output or errors as they return.

	Powerful metadata interface for performing complex queries to group and
associate network devices by name, manufacturer, type, location, and more.

	Encrypted storage of login credentials so you can interact without constantly
being prompted to enter your password.

	Flexible access-list & firewall policy parser that can test access if access
is permitted, or easily convert ACLs from one format to another.

	Detailed support for timezones and maintenance windows.

	A suite of tools for simplifying many common tasks.

New in version 1.2.

	Import your metadata from an existing RANCID [http://www.shrubbery.net/rancid/]
installation to get up-and-running quickly!

New in version 1.3.

	Import your metadata from a CSV file and get up-and-running even quicker!

Documentation

Please note that all documentation is written with users of Python 2.6 or
higher in mind. It’s safe to assume that Trigger will not work properly on
Python versions earlier than Python 2.6.

For now, most of our documentation is automatically generated from the source
code documentation, which is usually very detailed. As we move along, this will
change, especially with regards to some of the more creative ways in which we
use Trigger’s major functionality.

	Overview
	About

	Motivation

	History

	Components

	Supported Platforms

	Installation
	Dependencies

	Installing Trigger

	Basic Configuration

	Verifying Functionality

	Integrated Load Queue

	Configuration
	A Word about Defaults

	Configuration Directives

	Usage Guide
	Command-line Tools

	Determine commands to run upon login using .gorc

	Working with NetDevices

	Plugins

	Managing Credentials with .tacacsrc

	Usage Examples
	Simple Examples

	Slightly Advanced Examples

	API Documentation
	trigger.acl — ACL parsing library

	trigger.changemgmt — Change management library

	trigger.cmds — Command execution library

	trigger.conf — Configuration & Settings module

	trigger.contrib — Extra, optional tools that solve common problems, extend, or modify core functionality.

	trigger.exceptions — Trigger’s Exceptions

	trigger.gorc — Determine commands to run upon login

	trigger.netdevices — Network device metadata library

	trigger.netscreen — Juniper NetScreen firewall parser

	trigger.rancid — RANCID Compatibility Library

	trigger.tacacsrc — Network credentials library

	trigger.twister — Asynchronous device interaction library

	trigger.utils — CLI tools and utilities library

	Development
	Road Map

	Contributing

	Branching/Repository Layout

	Releases

	Adding Support for New Vendors

	License

	Getting Help
	Mailing list

	Twitter

	Email

	Bugs/ticket tracker

	IRC

	Wiki

	OpenHatch

	Experimental
	Asynchronous Endpoint Feature

	Preamble

	Code

	Changelog
	1.6.0 (2017-03-08)

	1.5.10 (2016-04-18)

	1.5.9 (2016-04-01)

	1.5.8 (2016-03-08)

	1.5.7 (2016-02-18)

	1.5.6 (2016-02-16)

	1.5.5 (2016-02-04)

	1.5.4 (2016-01-29)

	1.5.3 (2016-01-19)

	1.5.2

	1.5.1

	1.5

	1.4.9

	1.4.8

	1.4.7

	1.4.6

	1.4.5

	1.4.4

	1.4.3

	1.4.2

	1.4.1

	1.4

	1.3.1

	1.3.0

	1.2.4

	1.2.3

	1.2.2

	1.2.1

	1.2

	1.1

	1.0.0.100

	1.0.0.90

	1.0.0.80

	1.0.0.70

	1.0.0.60

	1.0.0.50

	1.0.0.40

	Legacy Versions

Indices and tables

	Index

	Module Index

	Search Page

Overview

This document is a high-level overview of Trigger’s features and a little
history about why it exists in the first place.

About

Trigger is a Python framework and suite of tools for interfacing with network
devices and managing network configuration and security policy. Trigger was
designed to increase the speed and efficiency of network configuration
management.

Trigger’s core device interaction utilizes the Twisted [http://twistedmatrix.com/] event-driven networking engine. The libraries can
connect to network devices by any available method (e.g. telnet, SSH),
communicate with them in their native interface (e.g. Juniper JunoScript, Cisco
IOS), and return output. Trigger is able to manage any number of jobs in
parallel and handle output or errors as they return.

Motivation

Trigger was created to facilitate rapid provisioning and automation of
firewall policy change requests by Network Security. It has since expanded to
cover all network device configuration.

The complexity of the AOL network was increasing much more quickly than the
amount of time we had to spend on administering it, both because AOL’s products
and services were becoming more sophisticated and because we were continually
expanding infrastructure. This pressure created a workload gap that had be
filled with tools that increased productivity.

Pre-Trigger tools worked only for some common cases and required extensive
knowledge of the network, and careful attention during edits and loads.
Sometimes this resulted in a system-impacting errors, and it caused routine
work more dangerous and unrewarding than it should have been.

With the high number of network devices on the AOL network Trigger has become
invaluable to the performance and reliability of the AOL network infrastructure.

History

Trigger was originally written by the AOL Network Security team and
is now maintained by the Network Engineering organization.

Once upon a time Trigger was actually called SIMIAN, a really bad acronym
that stood for System Integrating Management of Individual Access to
Networks. It has since outgrown its original purpose and can be used for any
network hardware configuration management operations, so we decided to ditch
the acronym and just go with a name that more accurately hints at what it does.

Components

Trigger is comprised of the following core components:

NetDevices

An abstract interface to network device metadata and security policy associations.

Twister

Asynchronous device interaction library. Performs login and basic command-line
interaction support via telnet or SSH using the Twisted asynchronous I/O
framework.

Access-List Parser

An ACL parsing library which contains various modules that allow for parsing,
manipulation, and management of network access control lists (ACLs). It will
parse a complete ACL and return an ACL object that can be easily translated to
any supported vendor syntax.

	Converting ACLs from one format to another (e.g. Cisco to Juniper)

	Testing an ACL to determine is access is permitted

	Automatically associate ACLs to devices by metatdata

Change Management

An abstract interface to bounce windows and moratoria. Includes support for RCS
version-control system for maintaining configuration data and an integrated
automated task queue.

Commands

Command execution library which abstracts the execution of commands on network
devices. Allows for integrated parsing and manipulation of return data for
rapid integration to existing or newly created tools.

TACACSrc

Network credentials library that provides an abstract interface to storing user
credentials encrypted on disk.

Command-Line Tools

Trigger includes a suite of tools for simplifying many common tasks, including:

	Quickly get an interactive shell

	Simple metadata search tool

Supported Platforms

Trigger currently officially supports devices manufactured by the following
vendors:

	A10 Networks

	All AX-series application delivery controllers and server load-balancers

	Arista Networks

	All 7000-family switch platforms

	Aruba Networks

	All Mobility Controller platforms

	Avocent (Emerson)

	All Cyclades ACS 6000-series console terminal servers

	Brocade Networks

	ADX application delivery switches

	MLX routers

	VDX switches

	Citrix Systems

	NetScaler application delivery controllers and server load-balancers

	Cisco Systems

	All router and switch platforms running IOS

	All firewalls running ASA software (NetACLInfo not implemented)

	All switch platforms running NX-OS

	Dell

	PowerConnect switches

	F5 Networks

	All BIG-IP application delivery controllers and server load-balancers

	Force10

	All router and switch platforms running FTOS

	Foundry/Brocade

	All router and switch platforms (NetIron, ServerIron, et al.)

	Juniper Networks

	All router, switch, and firewall platforms running Junos

	NetScreen firewalls running ScreenOS

	MRV Communications

	All LX-series console terminal servers

It’s worth noting that other vendors may actually work with the current
libraries, but they have not been tested. The mapping of supported platforms is
specified in settings.py as SUPPORTED_PLATFORMS. Modify it at
your own risk!

Installation

This is a work in progress. Please bear with us as we expand and improve this
documentation. If you have any feedback, please don’t hesitate to contact us [http://trigger.readthedocs.io/en/latest/index.html#getting-help]!!

Dependencies

In order for Trigger’s core functionality to work, you will need the primary
pieces of software:

	the Python programming language (version 2.6 or higher);

	the setuptools packaging/installation library;

	the Redis key-value server (and companion Python interface);

	the IPy IP address parsing library;

	the PyASN1 library;

	the Python cryptography library;

	and the Twisted event-driven networking engine.

Trigger has a tricky set of dependencies. If you want to take full advantage of
all of Trigger’s functionality, you’ll need them all. If you only want to use
certain parts, you might not need them all. Each dependency will list the
components that utilize it to help you make an informed decision.

Please read on for important details on each dependency – there are a few
gotchas.

Python

Obviously Trigger requires Python. Only version 2.6 is supported, but Python 2.7
should be just fine. There is currently no official support for Python 3.x. We
cannot yet say with confidence that we have worked out all of the legacy kinks
from when Trigger was first developed against Python 2.3.

setuptools

Setuptools [http://pypi.python.org/pypi/setuptools] comes with some Python installations by default; if yours doesn’t,
you’ll need to grab it. In such situations it’s typically packaged as
python-setuptools, py26-setuptools or similar. Trigger will likely drop its
setuptools dependency in the future, or include alternative support for the
Distribute [http://pypi.python.org/pypi/distribute] project, but for now setuptools is required for installation.

PyASN1

PyASN1 [http://pyasn1.sourceforge.net/] is a dependency of Twisted Conch
which implements Abstract Syntax Notation One (ASN.1 [http://en.wikipedia.org/wiki/Abstract_Syntax_Notation_1x]) and is used to
encode/decode public & private OpenSSH keys.

cryptography

cryptography [https://cryptography.io] provides the low-level (C-based)
encryption primitives.

Twisted

Twisted [http://twistedmatrix.com/] is huge and has a few dependencies
of its. We told you this was tricky! To make things easier, please make sure you
install the full-blown Twisted source tarball. You especially need
Twisted Conch [http://twistedmatrix.com/trac/wiki/TwistedConch], which is
used to run SSH.

Used by:

	trigger.cmds

	trigger.twister

Redis

Trigger uses Redis [http://redis.io/download] as a datastore for ACL information including device
associations and the integrated change queue. Please follow the instructions
on the Redis site to get Redis running.

If you’re using Ubuntu, it’s as simple as:

sudo apt-get install redis-server

The Python redis [http://pypi.python.org/pypi/redis] client is required
to interact with Redis.

Trigger currently assumes that you’re running Redis on localhost and on the
default port (6379). If you would like to change this, update
REDIS_HOST in settings.py to reflect the IP address or hostname
of your Redis instance.

Note

You may globally disable the use of Redis for loading ACL associations by
setting WITH_ACLS to False. Several libraries that interact
with devices also have a with_acls argument to toggle this at runtime.

Used by:

	trigger.acl.autoacl

	trigger.acl.db

	trigger.acl.tools

	trigger.netdevices

IPy

IPy [http://pypi.python.org/pypi/IPy] is a class and tools for handling
of IPv4 and IPv6 addresses and networks. It is used by Trigger for parsing and
handling IP addresses.

Used by:

	trigger.acl.db

	trigger.acl.parser

	trigger.acl.tools

	trigger.cmds

	trigger.conf.settings

	trigger.netscreen

pytz

pytz [http://pypi.python.org/pypi/pytz] is an immensely powerful time zone
library for Python that allows accurate and cross platform timezone calculations.
It is used by Trigger’s change management interface to allow for strict adherance
to scheduled maintenance events.

Used by:

	trigger.acl.db

	trigger.changemgmt

	trigger.netdevices

SimpleParse

SimpleParse [http://pypi.python.org/pypi/SimpleParse] is an extremely fast parser
generator for Python that converts EBNF grammars into parsers. It is used by Trigger’s
ACL parser to allow us to translate ACLs from flat files into vendor-agnostic objects.

Used by:

	trigger.acl.parser

Package tools

We strongly recommend using pip [http://pypi.python.org/pypi/pip] to install
Trigger as it is newer and generally better than easy_install. In either
case, these tools will automatically install of the dependencies for you
quickly and easily.

Other Dependencies

Know for now that if you want to use the integrated load queue, you may
potentially require an additional database library.

See Database Drivers below for more information.

Installing Trigger

The following steps will get you the very basic functionality and will be
improved over time. As mentioned at the top of this document, if you have any
feedback or questions, please get get in touch [http://trigger.readthedocs.io/en/latest/index.html#getting-help]!

Install Trigger package

Using pip [http://pypi.python.org/pypi/pip]:

sudo pip install trigger

From source (which will use easy_install):

sudo python setup.py install

Create configuration directory

Trigger expects to find its configuration files to be in /etc/trigger. This
can be customized using the PREFIX configuration variable within
settings.py:

sudo mkdir /etc/trigger

That’s it! Now you’re ready to configure Trigger.

Basic Configuration

Warning

For these steps you’ll need to download the Trigger tarball [https://github.com/trigger/trigger/tarball/develop], expand it, and then
navigate to the root directory (the same directory in which you’ll find
setup.py).

Copy settings.py

Trigger expects settings.py to be in /etc/trigger:

sudo cp configs/trigger_settings.py /etc/trigger/settings.py

If you really don’t like this, you may override the default location by setting
the environment variable TRIGGER_SETTINGS to the desired location. If you
go this route, you must make sure all Trigger-based tools have this set prior
to any imports!

Copy metadata file

Trigger’s netdevices module expects to find the device metadata file
in PREFIX. This file provides Trigger with information about your
devices and is at the core of Trigger’s device interaction. Anything that
communicates with devices relies on the metadata stored within this file.

For the purpose of basic config, we’ll just use the sample netdevices.json file:

sudo cp configs/netdevices.json /etc/trigger/netdevices.json

For more information on how Trigger uses the netdevices file please see
Working with NetDevices.

Copy shared secret file

By default, Trigger’s tacacsrc module expects to find .tackf in
the PREFIX. This is the location of the file that contains the
passphrase used for the symettric encryption of user credentials within the
.tacacsrc file. For starters, just use the sample file provided in the
Trigger distribution:

sudo cp tests/data/tackf /etc/trigger/.tackf

If you’re using a non-standard location, be sure to update the
TACACSRC_KEYFILE configuration variable within settings.py with the
location of .tackf!

For more information on how Trigger uses encryption to protect credentials
please see Managing Credentials with .tacacsrc.

Copy autoacl.py

Trigger’s autoacl module expects to find autoacl.py in the
PREFIX. This is used to customize the automatic ACL associations for
network devices.

sudo cp configs/autoacl.py /etc/trigger/autoacl.py

If you’re using a non-standard location, be sure to update the
AUTOACL_FILE configuration variable within settings.py with the
location of autoacl.py!

Copy bounce.py

Trigger’s bounce module expects to find bounce.py in
the PREFIX. This module controls how change management (aka
maintenance or “bounce”) windows get auto-applied to network devices.

sudo cp configs/bounce.py /etc/trigger/bounce.py

If you’re using a non-standard location, be sure to update the
BOUNCE_FILE configuration variable within settings.py with the
location of bounce.py!

Verifying Functionality

Warning

For these steps you’ll still need to be at the root directory of the
Trigger tarball [https://github.com/trigger/trigger/tarball/develop]. If
you haven’t already, download it, expand it, and then navigate to the root
directory (the same directory in which you’ll find setup.py).

Once the dependencies are installed, fire up your trusty Python interpreter in
interactive mode and try doing stuff.

Important

Throughout this documentation you will see commands or code preceded by
a triple greater-than prompt (>>>). This indicates that they are being
entered into a Python interpreter in interactive mode.

To start Python in interactive mode, it’s as simple as executing
python from a command prompt:

% python
Python 2.7.2 (default, Jun 20 2012, 16:23:33)
Type "help", "copyright", "credits" or "license" for more information.
>>>

For more information, please see the official Python documentation on
interactive mode [http://docs.python.org/tutorial/interpreter.html#interactive-mode].

NetDevices

Try instantiating NetDevices, which holds your device metadata:

>>> from trigger.netdevices import NetDevices
>>> nd = NetDevices()
>>> dev = nd.find('test1-abc.net.aol.com')

ACL Parser

Try parsing an ACL using the ACL parser (the tests directory can be found
within the Trigger distribution):

>>> from trigger.acl import parse
>>> acl = parse(open("tests/data/acl.test"))
>>> len(acl.terms)
103

ACL Database

Warning

This WILL NOT work without Redis installed and
WITH_ACLS set to True. If you have ACL support disabled, just
skip this section.

Try loading the AclsDB to inspect automatic associations. First directly from autoacl:

>>> from trigger.acl.autoacl import autoacl
>>> autoacl(dev)
set(['juniper-router.policer', 'juniper-router-protect'])

And then inherited from autoacl by AclsDB:

>>> from trigger.acl.db import AclsDB
>>> a = AclsDB()
>>> a.get_acl_set(dev)
>>> dev.implicit_acls
set(['juniper-router.policer', 'juniper-router-protect'])

Now that you’ve properly installed Trigger, you might want to know how to use it.
Please have a look at the Usage Guide.

Integrated Load Queue

Trigger currently uses a database for the automated ACL load queue used by the
load_acl and acl utilities.

The supported databases are MySQL [http://www.mysql.com/], PostgreSQL [http://www.postgresql.org/], and SQLite [http://sqlite.org].

SQLite is the easiest to get running because generally this module is part of
the Python standard library, and the database can be a simple file on your
system.

It’s probably best to create a unique database and database user for this
purpose, but we’ll leave that up to you.

If you want to use this functionality, you will need to do the following:

	Choose your database solution

	Create a database on it to be used by the load queue

	If you’re not using SQLite, ensure you have the database driver installed

	Specify your database settings in settings.py

	Run the init_task_db tool

	Profit!

Database Drivers

Note

If you are using sqlite3 you may ignore this section as the driver is
included in the Python standard library.

Some of the database libraries are Python C extensions and so will expect
gcc and a number of development libraries to be available on your system.

Generally you will need the development headers for Python and OpenSSL as well
as the development libraries for the database you’re using.

PostgreSQL

Your only choice is psycopg2 [https://pypi.python.org/pypi/psycopg2]. This is a
Python C extension which requires compilation.

Here are some tips to install the library dependencies:

	Ubuntu

	sudo apt-get install libpq-dev libssl-dev python-dev

	CentOS/RedHat

	sudo yum install postgresql-devel openssl-devel python-devel

MySQL

For MySQL you have two choices:

	PyMySQL [https://pypi.python.org/pypi/PyMySQL], a pure Python MySQL driver.

	MySQL-python [https://pypi.python.org/pypi/MySQL-python]. This is a
Python C extension which requires compilation.

If you’re using MySQL-python, here are some tips to install the library
dependencies:

	Ubuntu

	sudo apt-get install libmysqlclient-dev libssl-dev python-dev

	CentOS/RedHat

	sudo yum install mysql-devel openssl-devel python-devel

Configuration

This document describes the configuration options available for Trigger.

If you’re using the default loader, you must create or copy the provided
trigger_settings.py module and make sure it is in
/etc/trigger/settings.py on the local system.

A Word about Defaults

There are two Trigger components that rely on Python modules to be provided on
disk in /etc/trigger and these are:

	trigger.acl.autoacl at /etc/trigger/autoacl.py

	trigger.conf at /etc/trigger/settings.py

	trigger.changemgmt.bounce at /etc/trigger/bouncy.py

If your custom configuration either cannot be found or fails to import, Trigger
will fallback to the defaults.

settings.py

Using a custom settings.py

You may override the default location using the TRIGGER_SETTINGS
environment variable.

For example, set this variable and fire up the Python interpreter:

% export TRIGGER_SETTINGS=/home/jathan/sandbox/trigger/conf/trigger_settings.py
% python
Type "help", "copyright", "credits" or "license" for more information.
>>> import os
>>> os.environ.get('TRIGGER_SETTINGS')
'/home/j/jathan/sandbox/netops/trigger/conf/trigger_settings.py'
>>> from trigger.conf import settings

Observe that it doesn’t complain. You have loaded settings.py from a custom
location!

Using global defaults

If you don’t want to specify your own settings.py, it will warn you and
fallback to the defaults:

>>> from trigger.conf import settings
trigger/conf/__init__.py:114: RuntimeWarning: Module could not be imported from /etc/trigger/settings.py. Using default global settings.
 warnings.warn(str(err) + ' Using default global settings.', RuntimeWarning)

autoacl()

The trigger.netdevices and trigger.acl modules require
autoacl().

Trigger wants to import the autoacl() function from
either a module you specify or, failing that, the default location.

Using a custom autoacl()

You may override the default location of the module containing the autoacl()
function using the AUTOACL_FILE environment variable just like how you
specified a custom location for settings.py.

Using default autoacl()

Just as with settings.py, the same goes for autoacl():

>>> from trigger.acl.autoacl import autoacl
trigger/acl/autoacl.py:44: RuntimeWarning: Function autoacl() could not be found in /etc/trigger/autoacl.py, using default!
 warnings.warn(msg, RuntimeWarning)

Keep in mind this autoacl() has the expected
signature but does nothing with the arguments and only returns an empty set:

>>> autoacl('foo')
set([])

Configuration Directives

Global settings

PREFIX

This is where Trigger should look for its essential files including
autoacl.py and netdevices.xml.

Default:

'/etc/trigger'

USE_GPG_AUTH

Toggles whether or not we should use GPG authentication for storing TACACS
credentials in the user’s .tacacsrc file. Set to False to use the old
.tackf encryption method, which sucks but requires almost no overhead.
Should be False unless instructions/integration is ready for GPG. At this
time the documentation for the GPG support is incomplete.

Default:

False

TACACSRC

Sets the location of the .tacacsrc file.

You may override this by setting the TACACSRC environment variable to the
path of the file.

Default:

'$HOME/.tacacsrc'

TACACSRC_KEYFILE

Only used if GPG auth is disabled. This is the location of the file that
contains the passphrase used for the two-way hashing of the user credentials
within the .tacacsrc file.

You may override this by setting the TACACSRC_KEYFILE environment variable
to path of the file.

Default:

'/etc/trigger/.tackf'

DEFAULT_REALM

Default login realm to store user credentials (username, password) for general
use within the .tacacsrc file.

Default:

'aol'

TEXTFSM_TEMPLATE_DIR

Default path to TextFSM template directory. It is recommended to pull the
Network to Code templates from here Network to Code templates and place
them inside the vendor directory inside the trigger root.

Default:

'/etc/trigger/vendor/ntc_templates'

FIREWALL_DIR

Location of firewall policy files.

Default:

'/data/firewalls'

TFTPROOT_DIR

Location of the tftproot directory.

Default:

'/data/tftproot'

INTERNAL_NETWORKS

A list of IPy.IP objects describing your internally owned networks. All
network blocsk owned/operated and considered a part of your network should be
included. The defaults are private IPv4 networks defined by RFC 1918.

Default:

[IPy.IP("10.0.0.0/8"), IPy.IP("172.16.0.0/12"), IPy.IP("192.168.0.0/16")]

VENDOR_MAP

New in version 1.2.

A mapping of manufacturer attribute values to canonical vendor name used by
Trigger. These single-word, lowercased canonical names are used throughout
Trigger.

If your internal definition differs from the UPPERCASED ones specified below
(which they probably do, customize them here.

Default:

{
 'A10 NETWORKS': 'a10',
 'ARISTA NETWORKS': 'arista',
 'BROCADE': 'brocade',
 'CISCO SYSTEMS': 'cisco',
 'CITRIX': 'citrix',
 'DELL': 'dell',
 'FOUNDRY': 'foundry',
 'JUNIPER': 'juniper',
 'NETSCREEN TECHNOLOGIES': 'netscreen',
}

SUPPORTED_PLATFORMS

New in version 1.2.

A dictionary keyed by manufacturer name containing a list of the device types
for each that is officially supported by Trigger. Do not modify this unless you
know what you’re doing!

Default:

{
 'a10': ['SWITCH'],
 'arista': ['SWITCH'],
 'brocade': ['ROUTER', 'SWITCH'],
 'cisco': ['ROUTER', 'SWITCH', 'FIREWALL'],
 'citrix': ['SWITCH'],
 'dell': ['SWITCH'],
 'foundry': ['ROUTER', 'SWITCH'],
 'juniper': ['FIREWALL', 'ROUTER', 'SWITCH'],
 'netscreen': ['FIREWALL']
}

SUPPORTED_VENDORS

A tuple of strings containing the names of valid manufacturer names. These are
currently defaulted to what Trigger supports internally. Do not modify this
unless you know what you’re doing!

Default:

(
 'a10',
 'arista',
 'aruba',
 'avocent',
 'brocade',
 'cisco',
 'citrix',
 'dell',
 'f5',
 'force10',
 'foundry',
 'juniper',
 'mrv',
 'netscreen',
 'paloalto',
 'pica8',
)

SUPPORTED_TYPES

A tuple of device types officially supported by Trigger. Do not modify this
unless you know what you’re doing!

Default:

('CONSOLE', 'DWDM', 'FIREWALL', 'LOAD_BALANCER', 'ROUTER', 'SWITCH')

DEFAULT_TYPES

New in version 1.2.

A mapping of of vendor names to the default device type for each in the event
that a device object is created and the deviceType attribute isn’t set for
some reason.

Default:

{
 'a10': 'SWITCH',
 'arista': 'SWITCH',
 'brocade': 'SWITCH',
 'citrix': 'SWITCH',
 'cisco': 'ROUTER',
 'dell': 'SWITCH',
 'foundry': 'SWITCH',
 'juniper': 'ROUTER',
 'netscreen': 'FIREWALL',
}

FALLBACK_TYPE

New in version 1.2.

When a vendor is not explicitly defined within DEFAULT_TYPES,
fallback to this type.

Default:

'ROUTER'

FALLBACK_MANUFACTURER

New in version 1.5.3.

When a manufacturer/vendor is not explicitly defined for a
NetDevice object, fallback to to this value.

Default:

'UNKNOWN'

Twister settings

These settings are used to customize the timeouts and methods used by Trigger
to connect to network devices.

DEFAULT_TIMEOUT

Default timeout in seconds for commands executed during a session. If a
response is not received within this window, the connection is terminated.

Default:

300

TELNET_TIMEOUT

Default timeout in seconds for initial telnet connections.

Default:

60

TELNET_ENABLED

New in version 1.2.

Whether or not to allow telnet fallback. Set to False to disable support
for telnet.

Default:

True

SSH_PORT

New in version 1.4.4.

Destination TCP port to use for SSH client connections.

Default:

22

SSH_AUTHENTICATION_ORDER

New in version 1.5.1.

The preferred order in which SSH authentication methods are tried. Customize
this if you wish to change the order of, or modify the supported methods.

Default:

['password', 'keyboard-interactive', 'publickey']

TELNET_PORT

New in version 1.4.4.

Destination TCP port to use for Telnet client connections.

Default:

23

TRIGGER_ENABLEPW

New in version 1.4.3.

When connecting to devices that require the entry of an enable password (such
as when a “>” prompt is detected), Trigger may automatically execute the
“enable” command and pass the enable password along for you.

You may provide the enable password by setting the TRIGGER_ENABLEPW
environment variable.

Default:

None

SSH_PTY_DISABLED

New in version 1.2.

A mapping of vendors to the types of devices for that vendor for which you
would like to disable interactive (pty) SSH sessions, such as when using
bin/gong.

Default:

{
 'dell': ['SWITCH'],
}

SSH_ASYNC_DISABLED

New in version 1.2.

A mapping of vendors to the types of devices for that vendor for which you
would like to disable asynchronous (NON-interactive) SSH sessions, such as when using
execute or Commando to remotely control a
device.

Default:

{
 'arista': ['SWITCH'],
 'brocade': ['SWITCH'],
 'dell': ['SWITCH'],
}

IOSLIKE_VENDORS

A tuple of strings containing the names of vendors that basically just emulate
Cisco’s IOS and can be treated accordingly for the sake of interaction.

Default:

('a10', 'arista', 'brocade', 'cisco', 'dell', 'foundry')

CONTINUE_PROMPTS

A list of strings representing continue prompts sent by devices that indicate
the device is awaiting user confirmation when interacting with the device. If a
continue prompt is detected, Trigger will temporarily set this value to the
prompt and send along the next command (for example if you’re expecting such a
prompt and you want to send along “yes”).

When checking these prompts, the incoming output data from the device will be
tested whether it ends with one of these prompts. These should be as
specific as possible, including trailing spaces.

The default values are common continue prompts encountered throughout the
lifetime of the Trigger project’s development, and is by no means
comprehensive. If you need to customize these prompts for your environment,
utilize this setting.

Default:

[
 'continue?',
 'proceed?',
 '(y/n):',
 '[y/n]:',
 '[confirm]',
 '[yes/no]: ',
 'overwrite file [startup-config] ?[yes/press any key for no]....'
]

GORC_FILE

The file path where a user’s .gorc is expected to be found.

Default:

'~/.gorc'

GORC_ALLOWED_COMMANDS

The only root commands that are allowed to be executed when defined within a
users’s ~/.gorc file. Any root commands not specified here will be
filtered out by filter_commands().

Default:

'~/.gorc'

NetDevices settings

WITH_ACLS

Globally toggle whether to load ACL associations from the Redis database. If
you don’t have Redis or aren’t using Trigger to manage ACLs set this to
False.

Note

If you are doing work that does not require ACL information setting this to
False can speed things up. Several libraries that interact with devices
also have a with_acls argument to toggle this at runtime.

Default:

False

DEFAULT_ADMIN_STATUS

New in version 1.6.

When the administrative status is not defined using the adminStatus field
on a NetDevice object, the default administrative status
will be used.

By default Trigger only operates on devices set to PRODUCTION. This is
covered in more detail under Instantiating NetDevices.

Default:

'PRODUCTION'

AUTOACL_FILE

Path to the explicit module file for autoacl.py so that we can still perform
from trigger.acl.autoacl import autoacl without modifying sys.path.

Default:

'/etc/trigger/autoacl.py'

NETDEVICES_LOADERS

New in version 1.3.

A tuple of data loader classes, specified as strings. Optionally, a tuple can
be used instead of a string. The first item in the tuple should be the Loader’s
module, subsequent items are passed to the Loader during initialization.

Loaders should inherit from BaseLoader. For now,
please see the source code for the pre-defined loader objects at
trigger/netdevices/loaders/filesystem.py for examples.

Default:

(
 'trigger.netdevices.loaders.filesystem.XMLLoader',
 'trigger.netdevices.loaders.filesystem.JSONLoader',
 'trigger.netdevices.loaders.filesystem.SQLiteLoader',
 'trigger.netdevices.loaders.filesystem.CSVLoader',
 'trigger.netdevices.loaders.filesystem.RancidLoader',
)

NETDEVICES_SOURCE

New in version 1.3.

A path or URL to netdevices device metadata source data, which is used to
populate NetDevices with NetDevice
objects. For more information on this, see NETDEVICES_LOADERS.

This value may be as simple as an absolute path to a file on your local system,
or it may be a fully-fledge URL such as
http://user:pass@myhost.com:8080/stuff?foo=bar#fragment-data. This URL data
is parsed and passed onto a BaseLoader subclass
for retrieving device metadata.

You may override this location by setting the NETDEVICES_SOURCE environment
variable to the path of the file.

Default:

'/etc/trigger/netdevices.xml'

RANCID_RECURSE_SUBDIRS

New in version 1.2.

When using RANCID [http://www.shrubbery.net/rancid] as a data source, toggle
whether to treat the RANCID root as a normal instance, or as the root to
multiple instances.

You may override this location by setting the RANCID_RECURSE_SUBDIRS
environment variable to any True value.

Default:

False

VALID_OWNERS

A tuple of strings containing the names of valid owning teams for
NetDevice objects. This is intended to be a master
list of the valid owners to have a central configuration entry to easily
reference. Please see the sample settings file for an example to use in your
environment.

Default:

()

JUNIPER_FULL_COMMIT_FIELDS

Fields and values defined here will dictate which Juniper devices receive a
commit-configuration full when populating
commit_commands. The fields and values must
match the objects exactly or it will fallback to commit-configuration.

Example:

Perform "commit full" on all Juniper EX4200 switches.
JUNIPER_FULL_COMMIT_FIELDS = {
 'deviceType': 'SWITCH',
 'make': 'EX4200',
}

Default

{}

Bounce Window settings

BOUNCE_FILE

New in version 1.3.

The path of the explicit module file containing custom bounce window mappings.
This file is expected to define a bounce() function that takes a
NetDevice object as an argument and returns a
BounceWindow object.

You may override the default location of the module containing the bounce()
function by setting the BOUNCE_FILE environment variable to the path of the
file.

Default:

'/etc/trigger/bounce.py'

BOUNCE_DEFAULT_TZ

New in version 1.3.

The name of the default timezone for bounce windows. Olson zoneinfo names [http://en.wikipedia.org/wiki/Tz_database#Names_of_time_zones] are used for
this in the format of Area/Location. All BounceWindow
objects are configured using “US/Eastern”.

Default:

'US/Eastern'

BOUNCE_DEFAULT_COLOR

New in version 1.3.

The default fallback window color for bounce windows. Must be one of ‘green’,
‘yellow’, or ‘red’.

	green

	Low Risk. Minor impact on user or customer environments. Backing-out
the change, if required, is easily accomplished. User notification is often
unnecessary.

	yellow

	Medium Risk. Potential exists for substantially impacting user or
customer environments. Backing-out the change, if required, can be
accomplished in a reasonable timeframe.

	red

	High Risk. The highest potential impact on users or cutomers. Any
non-standard add, move or change falls into this category. Backing-out of a
high-risk change may be time-consuming or difficult.

Default:

'red'

Redis settings

REDIS_HOST

Redis master server. This will be used unless it is unreachable.

Default:

'127.0.0.1'

REDIS_PORT

The Redis port.

Default:

6379

REDIS_DB

The Redis DB to use.

Default:

0

Database settings

These will eventually be replaced with another task queue solution (such as
Celery). For now, you’ll need to populate this with information for your
database.

These are all self-explanatory, I hope. For more information on database
drivers that you may need, please see Database Drivers.

DATABASE_ENGINE

The database driver you intend to use for the task queue. This can be one of
postgresql, mysql, sqlite3. For the purpose of backwards
compatibility this defaults to mysql.

Default:

'mysql'

DATABASE_NAME

The name of the database. If using sqlite3, this is the path to the database file.

Default:

''

DATABASE_USER

The username to use to connect to the database. (Not used with sqlite3)

Default:

''

DATABASE_PASSWORD

The password for the user account used to connect to the database. (Not used with sqlite)

Default:

''

DATABASE_HOST

The host on which your database resides. Set to empty string for localhost.
(Not used with sqlite3)

Default:

''

DATABASE_PORT

The destination port used by the task queue. Set to empty string for default.
(Not used with sqlite3)

Default:

''

Access-list Management settings

These are various settings that control what files may be modified, by various
tools and libraries within the Trigger suite. These settings are specific to
the functionality found within the trigger.acl module.

IGNORED_ACLS

This is a list of FILTER names of ACLs that should be skipped or ignored by
tools. These should be the names of the filters as they appear on devices. We
want this to be mutable so it can be modified at runtime.

Default:

[]

NONMOD_ACLS

This is a list of FILE names of ACLs that shall not be modified by tools. These
should be the names of the files as they exist in FIREWALL_DIR. Trigger
expects ACLs to be prefixed with 'acl.'.

Default:

[]

VIPS

This is a dictionary mapping of real IP to external NAT IP address for used by
your connecting host(s) (aka jump host). This is used primarily by load_acl
in the event that a connection from a real IP fails (such as via tftp) or when
explicitly passing the --no-vip flag.

Format: {local_ip: external_ip}

Default:

{}

Access-list loading & rate-limiting settings

All of the following esttings are currently only used by load_acl. If and
when the load_acl functionality gets moved into the library API, this may
change.

ALLOW_JUNIPER_MULTILINE_COMMENTS

Whether to allow multi-line comments to be used in Juniper firewall filters.
The default behavior is to result in a syntax error when a multi-line comment
is detected when parsing a firewall filter using the acl library.

Default:

False

AUTOLOAD_FILTER

A list of FILTER names (not filenames) that will be skipped during automated
loads (load_acl --auto). This setting was renamed from
AUTOLOAD_BLACKLIST; usage of that name is being phased out.

Default:

[]

AUTOLOAD_FILTER_THRESH

A dictionary mapping for FILTER names (not filenames) and a numeric threshold.
Modify this if you want to create a list that if over the specified number of
devices will be treated as bulk loads.

For now, we provided examples so that this has more context/meaning. The
current implementation is kind of broken and doesn’t scale for data centers
with a large of number of devices.

Default:

{}

AUTOLOAD_BULK_THRESH

Any ACL applied on a number of devices >= this number will be treated as bulk
loads. For example, if this is set to 5, any ACL applied to 5 or more devices
will be considered a bulk ACL load.

Default:

10

BULK_MAX_HITS

This is a dictionary mapping of filter names to the number of bulk hits. Use
this to override BULK_MAX_HITS_DEFAULT. Please note that this number is
used PER EXECUTION of load_acl --auto. For example if you ran it once per
hour, and your bounce window were 3 hours, this number should be the total
number of expected devices per ACL within that allotted bounce window. Yes this
is confusing and needs to be redesigned.)

Examples:

	1 per load_acl execution; ~3 per day, per 3-hour bounce window

	2 per load_acl execution; ~6 per day, per 3-hour bounce window

Format: {'filter_name': max_hits}

Default:

{}

BULK_MAX_HITS_DEFAULT

If an ACL is bulk but not defined in BULK_MAX_HITS, use this number as
max_hits. For example using the default value of 1, that means load on one
device per ACL, per data center or site location, per load_acl --auto
execution.

Default:

1

GET_TFTP_SOURCE

A callable that you may define within settings.py, that given a
NetDevice object as an argument, will determine the right
TFTP source-address to utilize.

This is specifically used within the bin/load_acl tool when connecting to
IOS-like (Cisco clone) devices to push ACL changes by telling the device from
where to pull the change over TFTP.

The callable you define must take 2 arguments: dev (a NetDevice object),
and no_vip (a Boolean), and must return a hostname or IP address that for
example:

def _my_tftp_getter(dev=None, no_vip=True):
 return '1.2.3.4'

Note

For the default implementation, please see the source code in
global_settings. This version’s behavior is modified by
VIPS to help decied whether to utilize a public or private IP,
and return that address.

Default:

trigger.conf.global_settings._get_tftp_source()

STAGE_ACLS

A callable that you may define within settings.py that given a list of ACL
filenames will stage the files in the appropriate location for them to be
retrieved, for example, via TFTP from a remote device. This could do anything
you require as a staging step prior to executing ACL changes such as uploading
files to another system.

This is specifically used within the bin/load_acl tool when preparing ACLs
to be loaded onto devices.

The callable you define must take 3 arguments: acls (a list of filenames),
log (a Twisted Python logging object), and sanitize_acls (a Boolean).
It must return a 3-tuple of (acl_contents, file_paths, failures), where:
acl_contents is a list of strings where each string is the entire contents
of an ACL file, file_paths is a list of file paths used to locate the files
(such as for use with TFTP, and fails an error string indicating an failure
or None indicating success. For example:

def _my_stage_acls(acls, log=None, sanitize_acls=False):
 acl_contents = []
 file_paths = []
 fails = None
 for acl in acls:
 if sanitize_acls:
 # Do stuff to the acl
 file_contents = open(acl).read()
 if not file_contents:
 fails = "%s could not be read"
 log.msg(fails)
 return ([], [], fails)
 acl_contents.append(file_contents)

 log.msg('All ACLs ready for staging')
 return (acl_contents, file_paths, fails)

Note

For the default implementation, please see the source code in
global_settings. This expects to find ACL files within
FIREWALL_DIR and to stage them into TFTPROOT_DIR,
which assumes that the TFTP server is running on the local system.

Default:

trigger.conf.global_settings._stage_acls()

On-Call Engineer Display settings

GET_CURRENT_ONCALL

This variable should reference a function that returns data for your on-call
engineer, or failing that None. The function should return a dictionary
that looks like this:

{
 'username': 'mrengineer',
 'name': 'Joe Engineer',
 'email': 'joe.engineer@example.notreal'
}

Default:

lambda x=None: x

CM Ticket Creation settings

CREATE_CM_TICKET

This variable should reference a function that creates a CM ticket and returns
the ticket number, or None. It defaults to _create_cm_ticket_stub,
which can be found within the settings.py source code and is a simple
function that takes any arguments and returns None.

Default:

_create_cm_ticket_stub

Notification settings

EMAIL_SENDER

New in version 1.2.2.

The default email sender for email notifications. It’s probably a good idea to
make this a no-reply address.

Default:

'nobody@not.real'

SUCCESS_EMAILS

A list of email addresses to email when things go well (such as from load_acl
--auto).

Default:

[]

FAILURE_EMAILS

A list of email addresses to email when things go not well.

Default:

[]

NOTIFICATION_SENDER

New in version 1.2.2.

The default sender for integrated notifications. This defaults to the
fully-qualified domain name (FQDN) for the local host.

Default:

socket.gethostname()

SUCCESS_RECIPIENTS

New in version 1.2.2.

Destinations (hostnames, addresses) to notify when things go well.

Default:

[]

FAILURE_RECIPIENTS

New in version 1.2.2.

Destinations (hostnames, addresses) to notify when things go not well.

Default:

[]

NOTIFICATION_HANDLERS

New in version 1.2.2.

This is a list of fully-qualified import paths for event handler functions.
Each path should end with a callable that handles a notification event and
returns True in the event of a successful notification, or None.

To activate a handler, add it to this list. Each handler is represented by a
string: the full Python path to the handler’s function name.

Handlers are processed in order. Once an event is succesfully handled, all
processing stops so that each event is only handled once.

Until this documentation improves, for a good example of how to create a
custom handler, review the source code for
email_handler().

Default:

[
 'trigger.utils.notifications.handlers.email_handler',
]

Usage Guide

Once you’ve properly installed Trigger, you might want to know how to use it.
Please have a look at the usage documentation!

	Command-line Tools

	Determine commands to run upon login using .gorc

	Working with NetDevices

	Plugins

	Managing Credentials with .tacacsrc

Command-line Tools

Blah blah blah command-line stuff here.

The following tools are included:

	acl - ACL database interface

	acl_script - Modify ACLs from the command-line

	aclconv - ACL Converter

	check_access - ACL Access Checker

	gnng - Display interface information

	gong - Device connector

	netdev - CLI search for NetDevices

acl - ACL database interface

About

acl is used to interface with the access-control list (ACL) database and
task queue. This is a simple command to manage explicit ACL associations within
the ACL database (acls.db), to search for both implicit and explicit ACL
associations, and to manage the ACL task queue.

Usage

Here is the usage output:

Usage:
 acl [--exact | --device-name-only] (<acl_name> | <device>)
 acl (--add | --remove) <acl_name> [<device> [<device> ...]]
 acl (--clear | --inject) [--quiet] [<acl_name> [<acl_name> ...]]
 acl (--list | --listmanual)
 acl --staged

Interface with the access-control list (ACL) database and task queue. This is
a simple command to manage explicit ACL associations within the ACL database
(acls.db), to search for both implicit and explicit ACL associations, and to
manage the ACL task queue.

Options:
 --version show program's version number and exit
 -h, --help show this help message and exit
 -s, --staged list currently staged ACLs
 -l, --list list ACLs currently in integrated (automated) queue
 -m, --listmanual list entries currently in manual queue
 -i, --inject inject into load queue
 -c, --clear clear from load queue
 -x, --exact match entire name, not just start
 -d, --device-name-only
 don't match on ACL
 -a <acl_name>, --add=<acl_name>
 add an acl to explicit ACL database, example: 'acl -a
 acl-name device1 device2'
 -r <acl_name>, --remove=<acl_name>
 remove an acl from explicit ACL database, example:
 'acl -r acl1-name -r acl2-name device'
 -q, --quiet be quiet! (For use with scripts/cron)

Examples

Managing ACL associations

Adding an ACL association

When adding an association, you must provide the full ACL name. You may,
however, use the short name of any devices to which you’d like to associate
that ACL:

% acl -a jathan-special test1-abc test2-abc
added acl jathan-special to test1-abc.net.aol.com
added acl jathan-special to test2-abc.net.aol.com

If you try to add an association for a device that does not exist, it will complain:

% acl -a foo godzilla-router
skipping godzilla-router: invalid device

Please use --help to find the right syntax.

Removing an ACL association

Removing associations are subject to the same restrictions as additions, however in this example we’ve referenced the devices by FQDN:

% acl -r jathan-special test1-abc.net.aol.com test2-abc.net.aol.com
removed acl jathan-special from test1-abc.net.aol.com
removed acl jathan-special from test2-abc.net.aol.com

Confirm the removal and observe that it returns nothing:

% acl jathan-special
%

If you try to remove an ACL that is not associated, it will complain:

% acl -r foo test1-abc
test1-abc.net.aol.com does not have acl foo

Searching for an ACL or device

You may search by full or partial names of ACLs or devices. When you search for
results, ACLs are checked first. If there are no matches then device names are
checked second. In either case, the pattern must match the beginning of the name
of the ACL or device.

You may search for the exact name of the ACL we just added:

% acl jathan-special
test1-abc.net.aol.com jathan-special
test2-abc.net.aol.com jathan-special

A partial ACL name will get you the same results in this case:

% acl jathan
test1-abc.net.aol.com jathan-special
test2-abc.net.aol.com jathan-special

A partial name will return all matching objects with names starting with the pattern. Because there are no ACLs starting with 'test1' matching devices are returned instead:

% acl test1
test1-abc.net.aol.com jathan-special abc123 xyz246
test1-def.net.aol.com 8 9 10
test1-xyz.net.aol.com 8 9 10

If you want to search for an exact ACL match, use the -x flag:

% acl -x jathan
No results for ['jathan']

Or if you want to match devices names only, use the -d flag:

% acl -d jathan-special
No results for ['jathan-special']

Working with the load queue

Not finished yet…

Integrated queue

Manual queue

acl_script - Modify ACLs from the command-line

About

acl_script is a tool and an API shipped that allows for the quick and easy
modifications of filters based on various criteria. This is used most in an
automated fashion, allowing for users to quickly and efficiently setup small
scripts to auto-generate various portions of an ACL.

Usage

Here is the usage output:

usage: acl_script [options]

ACL modify/generator from the commandline.
options:
 -h, --help
 -aACL, --acl=ACL specify the acl file
 -n, --no-changes don't make the changes
 --show-mods show modifications being made in a simple format.
 --no-worklog don't make a worklog entry
 -N, --no-input require no input (good for scripts)
 -sSOURCE_ADDRESS, --source-address=SOURCE_ADDRESS
 define a source address
 -dDESTINATION_ADDRESS, --destination-address=DESTINATION_ADDRESS
 define a destination address
 --destination-address-from-file=DESTINATION_ADDRESS_FROM_FILE
 read a set of destination-addresses from a file
 --source-address-from-file=SOURCE_ADDRESS_FROM_FILE
 read a set of source-addresses from a file
 --protocol=PROTOCOL define a protocol
 -pSOURCE_PORT, --source-port=SOURCE_PORT
 define a source-port
 --source-port-range=SOURCE_PORT_RANGE
 define a source-port range
 --destination-port-range=DESTINATION_PORT_RANGE
 define a destination-port range
 -PDESTINATION_PORT, --destination-port=DESTINATION_PORT
 define a destination port
 -tMODIFY_SPECIFIC_TERM, --modify-specific-term=MODIFY_SPECIFIC_TERM
 When modifying a JUNOS type ACL, you may specify this
 option one or more times to define a specific JUNOS
 term you want to modify. This takes one argument which
 should be the name of term.
 -cMODIFY_BETWEEN_COMMENTS, --modify-between-comments=MODIFY_BETWEEN_COMMENTS
 When modifying a IOS type ACL, you may specify this
 option one or more times to define a specific AREA of
 the ACL you want to modify. You must have at least 2
 comments defined in the ACL prior to running. This
 requires two arguments, the start comment, and the end
 comment. Your modifications will be done between the
 two.
 --insert-defined This option works differently based on the type of ACL
 we are modifying. The one similar characteristic is
 that this will never remove any access already defined,
 just append.
 --replace-defined This option works differently based on the type of ACL
 we are modifying. The one similar characteristic is
 that access can be removed, since this replaces whole
 sets of defined data.

Examples

Understanding --insert-defined

This flag will tell acl_script to append (read: never remove) information
to a portion of an ACL.

Junos

On a Junos-type ACL using --insert-defined, this will only replace parts of
the term that have been specified on the command-line. This may sound confusing
but this example should clear things up.

Take the following term:

term sr31337 {
 from {
 source-address {
 10.0.0.0/8;
 11.0.0.0/8;
 }
 destination-address {
 192.168.0.1/32;
 }
 destination-port 80;
 protocol tcp;
 }
 then {
 accept;
 count sr31337;
 }
}

If you run acl_script with the following arguments:

acl_script --modify-specific-term sr31337 --source-address 5.5.5.5/32 --destination-port 81 --insert-defined

The following is generated:

term sr31337 {
 from {
 source-address {
 5.5.5.5/32;
 10.0.0.0/8;
 11.0.0.0/8;
 }
 destination-address {
 192.168.0.1/32;
 }
 destination-port 80-81;
 protocol tcp;
 }
 then {
 accept;
 count sr31337;
 }
}

As you can see 5.5.5.5/32 was added to the source-address portion, and
81 was added as a destination-port. Notice that all other fields were
left alone.

IOS-like

On IOS-like ACLs --insert-defined behaves a little bit differently. In this
case the acl_script will only add access where it is needed.

Take the following example:

!!! I AM L33T
access-list 101 permit udp host 192.168.0.1 host 192.168.1.1 eq 80
access-list 101 permit ip host 192.168.0.5 host 192.168.1.10
access-list 101 permit tcp host 192.168.0.6 host 192.168.1.11 eq 22
!!! I AM NOT L33T

If you run acl_script with the following arguments:

acl_script --modify-between-comments "I AM L33T" "I AM NOT L33T" \
 --source-address 192.168.0.5 \
 --destination-address 192.168.1.10 \
 --destination-address 192.168.1.11 \
 --protocol tcp \
 --destination-port 80 \
 --insert-defined

This output is generated:

!!! I AM L33T
access-list 101 permit udp host 192.168.0.1 host 192.168.1.1 eq 80
access-list 101 permit ip host 192.168.0.5 host 192.168.1.10
access-list 101 permit tcp host 192.168.0.6 host 192.168.1.11 eq 22
access-list 101 permit tcp host 192.168.0.5 host 192.168.1.11 eq 80
!!! I AM NOT L33T

As you can see the last line was added, take note that the
192.168.0.5->192.168.1.10:80 access was not added because it was already
permitted previously.

Understanding --replace-defined

This flag will completely replace portions of an ACL with newly-defined information.

Junos

Take the following term:

term sr31337 {
 from {
 source-address {
 10.0.0.0/8;
 11.0.0.0/8;
 }
 destination-address {
 192.168.0.1/32;
 }
 destination-port 80;
 protocol tcp;
 }
 then {
 accept;
 count sr31337;
 }
}

	With the following arguments to acl_script::

	acl_script –modify-specific-term sr31337 –source-address 5.5.5.5 –replace-defined

The following is generated:

term sr31337 {
 from {
 source-address {
 5.5.5.5/32;
 }
 destination-address {
 192.168.0.1/32;
 }
 destination-port 80;
 protocol tcp;
 }
 then {
 accept;
 count sr31337;
 }
}

IOS-like

More on this later!

aclconv - ACL Converter

About

aclconv Convert an ACL on stdin, or a list of ACLs, from one format to another. Input format is determined automatically. Output format can be given with -f or with one of -i/-o/-j/-x. The name of the output ACL is determined automatically, or it can be specified with -n.

Usage

Here is the usage output:

Options:
-h, --help show this help message and exit
-f FORMAT, --format=FORMAT
-o, --ios-named Use IOS named ACL output format
-j, --junos Use JunOS ACL output format
-i, --ios Use IOS old-school ACL output format
-x, --iosxr Use IOS XR ACL output format
-n ACLNAME, --name=ACLNAME

Examples

Let’s start with a simple Cisco ACL:

$ cat http.acl
access-list 123 permit tcp any host 10.20.30.40 eq 80

And convert it to Juniper format:

$ aclconv -j http.acl
firewall {
replace:
 filter 123j {
 term T1 {
 from {
 destination-address {
 10.20.30.40/32;
 }
 protocol tcp;
 destination-port 80;
 }
 then {
 accept;
 count T1;
 }
 }
 }
}

Neat, huh?

check_access - ACL Access Checker

About

check_access determines if access is already in an ACL and if not provides
the output to add.

Usage

Here is the usage signature:

Usage: check_access [opts] file source dest [protocol [port]]

Examples

Let’s start with a simple Cisco extended ACL called acl.abc123 that looks
like this:

% cat acl.abc123
no ip access-list extended abc123
ip access-list extended abc123
!
!!! Permit this network
permit tcp 10.17.18.0 0.0.0.31 any
!
!!! Default deny
deny ip any any

Let’s use the example flow of checking whether http (port 80/tcp) is permitted from
any source to the destination 10.20.30.40 in the policy acl.abc123:

% check_access acl.abc123 any 10.20.30.40 tcp 80
!
!!! Permit this network
permit tcp 10.17.18.0 0.0.0.31 any
! check_access: ADD THIS TERM
permit tcp any host 10.20.30.40 eq 80
!
!!! Default deny
deny ip any any

It adds a comment that says "check_access: ADD THIS TERM", followed by the
policy one would need to add, and where (above the explicit deny).

Note

In order for the suggested edits feature to work, the policy must end
with an explicit deny.

Now if it were permitted, say if we chose 10.17.18.19 as the source, it
would tell you something different:

% check_access acl.acb123 10.17.18.19 10.20.30.40 tcp 80
!
!!! Permit this network
! check_access: PERMITTED HERE
permit tcp 10.17.18.0 0.0.0.31 any
!
!!! Default deny
deny ip any any
No edits needed.

It adds a comment that says "check_access: PERMITTED HERE", followed by the
policy that matches the flow. Additionally at the end it also reports "No
edits needed".

gnng - Display interface information

About

gnng Fetches interface information from routing and firewall devices. This
includes network and IP information along with the inbound and outbound filters
that may be applied to the interface. Skips un-numbered and disabled
interfaces by default. Works on Cisco, Foundry, Juniper, and NetScreen devices.

Usage

Here is the usage output:

$ gnng -h
Usage: gnng [options] [routers]

GetNets-NG Fetches interface information from routing and firewall devices.
This includes network and IP information along with the inbound and outbound
filters that may be applied to the interface. Skips un-numbered and disabled
interfaces by default. Works on Cisco, Foundry, Juniper, and NetScreen
devices.

Options:
 -h, --help show this help message and exit
 -a, --all run on all devices
 -c, --csv output the data in CSV format instead.
 -d, --include-disabled
 include disabled interfaces.
 -u, --include-unnumbered
 include un-numbered interfaces.
 -j JOBS, --jobs=JOBS maximum simultaneous connections to maintain.
 -N, --nonprod Look for production and non-production devices.
 -s SQLDB, --sqldb=SQLDB
 output to SQLite DB
 --dotty output connect-to information in dotty format.
 --filter-on-group=FILTER_ON_GROUP
 Run on all devices owned by this group
 --filter-on-type=FILTER_ON_TYPE
 Run on all devices with this device type

Examples

Displaying interfaces for a device

To fetch interface information for a device, just provide its hostname as an argument:

$ gnng test1-abc.net.aol.com
DEVICE: test1-abc.net.aol.com
Interface | Addresses | Subnets | ACLs IN | ACLs OUT | Description

fe-1/2/1.0 | 10.10.20.38 | 10.10.20.36/30 | | count_all | this is an interface
 | | | | test_filter |
ge-1/1/0.0 | 1.2.148.246 | 1.2.148.244/30 | | filterbad | and so is this
lo0.0 | 10.10.20.253 | 10.10.20.253 | protect | |
 | 10.10.20.193 | 10.10.20.193 | | |

You may specify any number of device hostnames as arguments, or to fetch ALL
devices pass the -a flag.

The rest is fairly self-explanatory.

gong - Device connector

About

go Go connects to network devices and automatically logs you in using
cached TACACS credentials. It supports telnet, SSHv1/v2.

PLEASE NOTE: go is still named gong (aka “Go NG”) within the
Trigger packaging due to legacy issues with naming conflicts. This will be
changing in the near future.

Usage

Here is the usage output:

% gong
Usage: gong [options] [device]

Automatically log into network devices using cached TACACS credentials.

Options:
 -h, --help show this help message and exit
 -o, --oob Connect to device out of band first.

Examples

Caching credentials

If you haven’t cached your credentials, you’ll be prompted to:

% gong test2-abc
Connecting to test2-abc.net.aol.com. Use ^X to exit.
/home/jathan/.tacacsrc not found, generating a new one!

Updating credentials for device/realm 'tacacsrc'
Username: jathan
Password:
Password (again):

Fetching credentials from /home/jathan/.tacacsrc
test2-abc#

This functionality is provided by Tacacsrc.

Connecting to devices

Using gong is pretty straightforward if you’ve already cached your credentials:

% gong test1-abc
Connecting to test1-abc.net.aol.com. Use ^X to exit.

Fetching credentials from /home/jathan/.tacacsrc
--- JUNOS 10.0S8.2 built 2010-09-07 19:55:32 UTC
jathan@test1-abc>

Full or partial hostname matches are also acceptable:

% gong test2-abc.net.aol.com
Connecting to test2-abc.net.aol.com. Use ^X to exit.

If there are multiple matches, you get to choose:

% gong test1
3 possible matches found for 'test1':
 [1] test1-abc.net.aol.com
 [2] test1-def.net.aol.com
 [3] test1-xyz.net.aol.com
 [0] Exit

Enter a device number: 3
Connecting to test1-xyz.net.aol.com. Use ^X to exit.

If a partial name only has a single match, it will connect automatically:

% gong test1-a
Matched 'test1-abc.net.aol.com'.
Connecting to test1-abc.net.aol.com. Use ^X to exit.

Out-of-band support

If a device has out-of-band (OOB) terminal server and ports specified within
NetDevices, you may telnet to the console by using
the -o flag:

% gong -o test2-abc
OOB Information for test2-abc.net.aol.com
telnet ts-abc.oob.aol.com 1234
Connecting you now...
Trying 10.302.134.584...
Connected to test2-abc.net.aol.com
Escape character is '^]'.

User Access Verification

Username:

Executing commands upon login

You may create a .gorc file in your home directory, in which you may
specify commands to be executed upon login to a device. The commands are
specified by the vendor name. Here is an example:

; .gorc - Example file to show how .gorc would work

[init_commands]
; Specify the commands you would like run upon login for each vendor name. The
; vendor name must match the one found in the CMDB for the manufacturer of the
; hardware. Currently these are:
;
; A10: a10
; Arista: arista
; Brocade: brocade
; Cisco: cisco
; Citrix: citrix
; Dell: dell
; Foundry: foundry
; Juniper: juniper
;
; Format:
;
; vendor:
; command1
; command2
;
juniper:
 request system reboot
 set cli timestamp
 monitor start messages
 show system users

cisco:
 term mon
 who

arista:
 python-shell

foundry:
 show clock

brocade:
 show clock

(You may also find this file at configs/gorc.example within the Trigger source
tree.)

Notice for Juniper one of the commands specified is request system
reboot. This is bad! But don’t worry, only a very limited subset of root
commands are allowed to be specified within the .gorc, and these are:

get
monitor
ping
set
show
term
terminal
traceroute
who
whoami

Any root commands not permitted will be filtered out prior to passing them
along to the device.

Here is an example of what happens when you connect to a Juniper device
with the specified commands in the sample .gorc file displayed above:

% gong test1-abc
Connecting to test1-abc.net.aol.com. Use ^X to exit.

Fetching credentials from /home/jathan/.tacacsrc
--- JUNOS 10.0S8.2 built 2010-09-07 19:55:32 UTC
jathan@test1-abc> set cli timestamp
Mar 28 23:05:38
CLI timestamp set to: %b %d %T

jathan@test1-abc> monitor start messages

jathan@test1-abc> show system users
Jun 28 23:05:39
11:05PM up 365 days, 13:44, 1 user, load averages: 0.09, 0.06, 0.02
USER TTY FROM LOGIN@ IDLE WHAT
jathan p0 awesome.win.aol.com 11:05PM - -cli (cli)

jathan@test1-abc>

Troubleshooting

Authentication failures

If gong fails to connect, it tries to tell you why, and in the event of an
authentication failure it will give you the opportunity to update your stored
credentials:

Fetching credentials from /home/j/jathan/.tacacsrc

Connection failed for the following reason:

'\n\n% Authentication failed.\n\n\nUser Access Verification\n\nUsername:'

Authentication failed, would you like to update your password? (Y/n)

Blank passwords

When initially caching credentials, your password cannot be blank. If you try,
gong complains:

Updating credentials for device/realm 'tacacsrc'
Username: jathan
Password:
Password (again):

Password cannot be blank, try again!

If gong detects a blank password in an existing .tacacsrc file, it will force you to update it:

Missing password for 'aol', initializing...

Updating credentials for device/realm 'aol'
Username [jathan]:

netdev - CLI search for NetDevices

About

netdev is a command-line search interface for
NetDevices metadata.

Usage

Here is the usage output:

% netdev
Usage: netdev [options]

Command-line search interface for 'NetDevices' metdata.

Options:
 --version show program's version number and exit
 -h, --help show this help message and exit
 -a, --acls Search will return acls instead of devices.
 -l <DEVICE>, --list=<DEVICE>
 List all information for individual DEVICE
 -s, --search Perform a search based on matching criteria
 -L <LOCATION>, --location=<LOCATION>
 For use with -s: Match on site location.
 -n <NODENAME>, --nodename=<NODENAME>
 For use with -s: Match on full or partial nodeName.
 NO REGEXP.
 -t <TYPE>, --type=<TYPE>
 For use with -s: Match on deviceType. Must be
 FIREWALL, ROUTER, or SWITCH.
 -o <OWNING TEAM NAME>, --owning-team=<OWNING TEAM NAME>
 For use with -s: Match on Owning Team (owningTeam).
 -O <ONCALL TEAM NAME>, --oncall-team=<ONCALL TEAM NAME>
 For use with -s: Match on Oncall Team (onCallName).
 -C <OWNING ORG>, --owning-org=<OWNING ORG>
 For use with -s: Match on cost center Owning Org.
 (owner).
 -v <VENDOR>, --vendor=<VENDOR>
 For use with -s: Match on canonical vendor name.
 -m <MANUFACTURER>, --manufacturer=<MANUFACTURER>
 For use with -s: Match on manufacturer.
 -b <BUDGET CODE>, --budget-code=<BUDGET CODE>
 For use with -s: Match on budget code
 -B <BUDGET NAME>, --budget-name=<BUDGET NAME>
 For use with -s: Match on budget name
 -k <MAKE>, --make=<MAKE>
 For use with -s: Match on make.
 -M <MODEL>, --model=<MODEL>
 For use with -s: Match on model.
 -N, --nonprod Look for production and non-production devices.

Examples

Displaying an individual device

You may use the -l option to list an individual device:

% netdev -l test1-abc

 Hostname: test1-abc.net.aol.com
 Owning Org.: 12345678 - Network Engineering
 Owning Team: Data Center
 OnCall Team: Data Center

 Vendor: Juniper (JUNIPER)
 Make: M40 INTERNET BACKBONE ROUTER
 Model: M40-B-AC
 Type: ROUTER
 Location: LAB CR10 16ZZ

 Project: Test Lab
 Serial: 987654321
 Asset Tag: 0000012345
 Budget Code: 1234578 (Data Center)

 Admin Status: PRODUCTION
 Lifecycle Status: INSTALLED
 Operation Status: MONITORED
 Last Updated: 2010-07-19 19:56:32.0

Partial names are also ok:

% netdev -l test1
3 possible matches found for 'test1':
 [1] test1-abc.net.aol.com
 [2] test1-def.net.aol.com
 [3] test1-xyz.net.aol.com
 [0] Exit

Enter a device number:

Searching by metadata

To search you must specify the -s flag. All subsequent options are used as search terms. Each of the supported options coincides with attributes found on NetDevice objects.

You must provide at least one optional field or this happens:

% netdev -s
netdev: error: -s needs at least one other option, excluding -l.

Search for all Juniper switches in site “BBQ”:

% netdev -s -t switch -v juniper -L bbq

All search arguments accept partial matches and are case-INsensitive, so this:

% netdev -s --manufacturer='CISCO SYSTEMS' --location=BBQ

Is equivalent to this:

% netdev -s --manufacturer=cisco --location=bbq

You can’t mix -l (list) and -s (search) because they contradict each other:

% netdev -s -l -n test1
Usage: netdev [options]

netdev: error: -l and -s cannot be used together

Determine commands to run upon login using .gorc

This is used by ../usage/scripts/go to execute commands upon login to a
device. A user may specify a list of commands to execute for each vendor. If
the file is not found, or the syntax is bad, no commands will be passed to the
device.

By default, only a very limited subset of root commands are allowed to be
specified within the .gorc. Any root commands not explicitly permitted will
be filtered out prior to passing them along to the device.

The only public interface to this module is get_init_commands.
Given a .gorc That looks like this:

[init_commands]
cisco:
 term mon
 terminal length 0
 show clock

This is what is returned:

>>> from trigger import gorc
>>> gorc.get_init_commands('cisco')
['term mon', 'terminal length 0', 'show clock']

You may also pass a list of commands as the init_commands argument to the
connect function (or a NetDevice
object’s method of the same name) to override anything specified in a user’s
.gorc:

>>> from trigger.netdevices import NetDevices
>>> nd = NetDevices()
>>> dev = nd.find('foo1-abc')
>>> dev.connect(init_commands=['show clock', 'exit'])
Connecting to foo1-abc.net.aol.com. Use ^X to exit.

Fetching credentials from /home/jathan/.tacacsrc
foo1-abc#show clock
22:48:24.445 UTC Sat Jun 23 2012
foo1-abc#exit
>>>

For detailed instructions on how to create a .gorc, please see Executing commands upon login.

Working with NetDevices

NetDevices is the core of Trigger’s device interaction.
Anything that communicates with devices relies on the metadata stored within
NetDevice objects.

Your Source Data

Before you can work with device metadata, you must tell Trigger how and from
where to read it. You may either modify the values for these options within
settings.py or you may specify the values as environment variables of the
same name as the configuration options.

Please see configuration for more information on how to do this. There
are two configuration options that facilitate this:

	NETDEVICES_SOURCE

	A URL or file path from which the metadata may be obtained. This defaults to
/etc/trigger/netdevices.json, but can be any URL with variables.

	NETDEVICES_LOADERS

	(Advanced) A tuple of data loader classes, specified as strings. This is an
advanced setting that you may use to create custom loaders if any of the
default loaders do not meet your needs. The primary default loader is the
JSONLoader.

A Brief Overview

When you instantiate NetDevices the location specified
NETDEVICES_SOURCE is passed onto the NETDEVICES_LOADERS
to try to parse and return device metadata.

Using the loaders, you don’t have to tell Trigger what the format of your
metadata source is. It tries to determine it automatically based on whether one
of the pre-defined loaders successfully returns data without throwing an error.

Anatomy of a Device

Trigger’s NetDevice objects represent everything Trigger
needs to know about each device under its care. These objects are pretty
complicated, but all you really need to know right now are the bare minimum set
of fields that Trigger needs to know about your devices. These fields are used
to control the behaviors and select the correct driver for each platform.

Field Values

Field values are expected to be strings. They are normalized prior to
evaluation, so case-sensitivity can be left up to you based on how you choose
to manage your data in your environment.

You may also specify custom fields not used or required by Trigger that you may
use for your own purposes, such as writing custom utilities.

Minium Required Fields

These are the bare minimum required fields for basic operations of Trigger on
most device platforms. Due to distinct differences across device platforms by
vendor, hardware, and operating system versions, not all device platforms can
be supported with the minimum felds.

Important

Support for certain device platforms, such as the Cisco Nexus, require
specifying other fields as detailed in the next section.

	nodeName

	The device hostname or IP address. Trigger does not validate this value for
you, so it must be able to be to be reconciled by the host system on which
Trigger is running. You may also specify a port here by separating the
hostname and port by a colon (e.g. hostname:2222) . We’ll cover that in
more detail later.

	manufacturer

	The representative name of the hardware vendor. This is also used to
dynamically populate the vendor attribute on the device object. For
Trigger’s list of supported vendors, please see
SUPPORTED_VENDORS.

	adminStatus

	(Recommended) The administrative status of the device. One of PRODUCTION or
NON-PRODUCTION. By default, Trigger will only work with devices that
are in PRODUCTION status. This is covered in more detail under
Instantiating NetDevices. If you do NOT specifiy adminStatus,
Trigger will fallback to the default value specified in
DEFAULT_ADMIN_STATUS.

	deviceType

	(Recommended) The type of device (e.g. router, switch, etc.). For the list
of supported device types, please see SUPPORTED_TYPES. If you do
NOT specify deviceType, Trigger will fallback to the type specified in
FALLBACK_TYPE.

For example the minimum required fields for a device using JSON might be:

{
 "nodeName": "n9k1",
 "deviceType": "SWITCH",
 "manufacturer": "CISCO",
 "model": "NEXUS",
 "adminStatus": "PRODUCTION"
}

Common Fields

Some vendors, such as Cisco for example, have a wide array of hardware types
with many different operating systems. For this reason, not all devices can be
supported with just vendor and device type. To identify these platforms,
we also make use of the make and model fields.

The following fields are required for full support of all officially supported
vendor platforms.

	make

	The device platform such as Cisco Nexus or just Nexus.

	model

	The specific device model as it appears on the network device, such as
N9K or NEXUS 9000.

Other Fields

There are a ton of other default fields that Trigger utilizes for other
purposes.

Quick Start

To get started quickly managing real devices, try this:

	Create a CSV file.

	Tell Trigger where to find your file by setting the locatoin of the file in
NETDEVICES_SOURCE in your settings.py.

Importing from RANCID

Do you have RANCID? Try using that instead! To learn more please visit the
section on working with the RANCID format.

Supported Formats

Trigger currently comes with loaders that support the following formats:

	CSV

	XML

	JSON

	RANCID

	SQLite

Except when using CSV or RANCID as a data source, the contents of your source
data should be a dump of relevant metadata fields from your CMDB.

If you don’t have a CMDB, then you’re going to have to populate this file
manually.

CSV

New in version 1.3.

This method is the most lightweight, but also the most limited. But it’s a
great starting point!

The bare minimum config for CSV is a file populated comma-separated values,
each on their own line with hostname,vendor. For example:

test1-abc.net.aol.com,juniper
test2-abc.net.aol.com,cisco

The most fields you may populate are the same as with the RANCID support.
Please see the explanation of the fields populated by the RANCID format. A “fully-populated” CSV file would look more like this:

test1-abc.net.aol.com,juniper,up,router
test2-abc.net.aol.com,juniper,up,router
fw1-xyz.net.aol.com,netscreen,up,firewall
lab1-switch.net.aol.com,foundry,up,switch

XML

XML is the slowest method supported by Trigger, but it is currently the default
for legacy reasons. At some point we will switch JSON to the default.

Here is a sample what the netdevices.xml file bundled with the Trigger
source code looks like:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Dummy version of netdevices.xml, with just one real entry modeled from the real file -->
<NetDevices>
 <device nodeName="test1-abc.net.aol.com">
 <adminStatus>PRODUCTION</adminStatus>
 <assetID>0000012345</assetID>
 <authMethod>tacacs</authMethod>
 <barcode>0101010101</barcode>
 <budgetCode>1234578</budgetCode>
 <budgetName>Data Center</budgetName>
 <coordinate>16ZZ</coordinate>
 <deviceType>ROUTER</deviceType>
 <enablePW>boguspassword</enablePW>
 <lastUpdate>2010-07-19 19:56:32.0</lastUpdate>
 <layer2>1</layer2>
 <layer3>1</layer3>
 <layer4>1</layer4>
 <lifecycleStatus>INSTALLED</lifecycleStatus>
 <loginPW></loginPW>
 <make>M40 INTERNET BACKBONE ROUTER</make>
 <manufacturer>JUNIPER</manufacturer>
 <model>M40-B-AC</model>
 <nodeName>test1-abc.net.aol.com</nodeName>
 <onCallEmail>nobody@aol.net</onCallEmail>
 <onCallID>17</onCallID>
 <onCallName>Data Center</onCallName>
 <owningTeam>Data Center</owningTeam>
 <OOBTerminalServerConnector>C</OOBTerminalServerConnector>
 <OOBTerminalServerFQDN>ts1.oob.aol.com</OOBTerminalServerFQDN>
 <OOBTerminalServerNodeName>ts1</OOBTerminalServerNodeName>
 <OOBTerminalServerPort>5</OOBTerminalServerPort>
 <OOBTerminalServerTCPPort>5005</OOBTerminalServerTCPPort>
 <operationStatus>MONITORED</operationStatus>
 <owner>12345678 - Network Engineering</owner>
 <projectName>Test Lab</projectName>
 <room>CR10</room>
 <serialNumber>987654321</serialNumber>
 <site>LAB</site>
 </device>
 ...
</NetDevices>

Please see configs/netdevices.xml within the Trigger source distribution for a
full example.

JSON

JSON is the fastest method supported by Trigger. This is especially the case if
you utilize the optional C extension of simplejson. The file can be minified and does
not need to be indented.

Here is a sample of what the netdevices.json file bundled with the Trigger
source code looks like (pretty-printed for readabilty):

[
 {
 "adminStatus": "PRODUCTION",
 "enablePW": "boguspassword",
 "OOBTerminalServerTCPPort": "5005",
 "assetID": "0000012345",
 "OOBTerminalServerNodeName": "ts1",
 "onCallEmail": "nobody@aol.net",
 "onCallID": "17",
 "OOBTerminalServerFQDN": "ts1.oob.aol.com",
 "owner": "12345678 - Network Engineering",
 "OOBTerminalServerPort": "5",
 "onCallName": "Data Center",
 "nodeName": "test1-abc.net.aol.com",
 "make": "M40 INTERNET BACKBONE ROUTER",
 "budgetCode": "1234578",
 "budgetName": "Data Center",
 "operationStatus": "MONITORED",
 "deviceType": "ROUTER",
 "lastUpdate": "2010-07-19 19:56:32.0",
 "authMethod": "tacacs",
 "projectName": "Test Lab",
 "barcode": "0101010101",
 "site": "LAB",
 "loginPW": null,
 "lifecycleStatus": "INSTALLED",
 "manufacturer": "JUNIPER",
 "layer3": "1",
 "layer2": "1",
 "room": "CR10",
 "layer4": "1",
 "serialNumber": "987654321",
 "owningTeam": "Data Center",
 "coordinate": "16ZZ",
 "model": "M40-B-AC",
 "OOBTerminalServerConnector": "C"
 },
 ...
]

To use JSON, create your NETDEVICES_SOURCE file full of objects that
look like the one above.

Please see configs/netdevices.json within the Trigger source distribution for
a full example.

RANCID

If you’ve already got a RANCID instance in your environment, this is the
easiest method to get running. At this time, however, the metadata available
from RANCID is very limited and populates only the following fields for each
Netdevice object:

	nodeName

	manufacturer

	deviceType

	adminStatus

The support for RANCID comes in two forms: single or multiple instance.

Single instance is the default and expects to find the router.db file and
the configs directory in the root directory you specify.

Multiple instance will instead walk the root directory and expect to find
router.db and configs in each subdirectory it finds. Multiple instance
can be toggled by seting the value of RANCID_RECURSE_SUBDIRS to
True to your settings.py.

To use RANCID as a data source, set the value of NETDEVICES_SOURCE in
settings.py to the absolute path of location of of the root directory where
your RANCID data is stored.

Note

Make sure that the value of RANCID_RECURSE_SUBDIRS matches the RANCID
method you are using. This setting defaults to False, so if you only
have a single RANCID instance, there is no need to add it to your
settings.py.

Lastly, to illustrate what a NetDevice object that has
been populated by RANCID looks like, here is the output of .dump():

Hostname: test1-abc.net.aol.com
Owning Org.: None
Owning Team: None
OnCall Team: None

Vendor: Juniper (juniper)
Make: None
Model: None
Type: ROUTER
Location: None None None

Project: None
Serial: None
Asset Tag: None
Budget Code: None (None)

Admin Status: PRODUCTION
Lifecycle Status: None
Operation Status: None
Last Updated: None

Compare that to what a device dump looks like when fully populated from CMDB
metadata in What’s in a NetDevice?. It’s important to keep this in mind, because
if you want to do device associations using any of the unpopulated fields,
you’re gonna have a bad time. This is subject to change as RANCID support
evolves, but this is the way it is for now.

SQLite

SQLite is somewhere between JSON and XML as far as performance, but also comes
with the added benefit that support is built into Python, and you get a real
database file you can leverage in other ways outside of Trigger.

--
-- Table structure for table `netdevices`
--
-- This is for 'netdevices.sql' SQLite support within
-- trigger.netdevices.NetDevices for storing and tracking network device
-- metadata.
--
-- This is based on the current set of existing attributes in use and is by no
-- means exclusive. Feel free to add your own fields to suit your environment.
--

CREATE TABLE netdevices (
 id INTEGER PRIMARY KEY,
 OOBTerminalServerConnector VARCHAR(1024),
 OOBTerminalServerFQDN VARCHAR(1024),
 OOBTerminalServerNodeName VARCHAR(1024),
 OOBTerminalServerPort VARCHAR(1024),
 OOBTerminalServerTCPPort VARCHAR(1024),
 acls VARCHAR(1024),
 adminStatus VARCHAR(1024),
 assetID VARCHAR(1024),
 authMethod VARCHAR(1024),
 barcode VARCHAR(1024),
 budgetCode VARCHAR(1024),
 budgetName VARCHAR(1024),
 bulk_acls VARCHAR(1024),
 connectProtocol VARCHAR(1024),
 coordinate VARCHAR(1024),
 deviceType VARCHAR(1024),
 enablePW VARCHAR(1024),
 explicit_acls VARCHAR(1024),
 gslb_master VARCHAR(1024),
 implicit_acls VARCHAR(1024),
 lastUpdate VARCHAR(1024),
 layer2 VARCHAR(1024),
 layer3 VARCHAR(1024),
 layer4 VARCHAR(1024),
 lifecycleStatus VARCHAR(1024),
 loginPW VARCHAR(1024),
 make VARCHAR(1024),
 manufacturer VARCHAR(1024),
 model VARCHAR(1024),
 nodeName VARCHAR(1024),
 onCallEmail VARCHAR(1024),
 onCallID VARCHAR(1024),
 onCallName VARCHAR(1024),
 operationStatus VARCHAR(1024),
 owner VARCHAR(1024),
 owningTeam VARCHAR(1024),
 projectID VARCHAR(1024),
 projectName VARCHAR(1024),
 room VARCHAR(1024),
 serialNumber VARCHAR(1024),
 site VARCHAR(1024)
);

To use SQLite, create a database using the schema provided within Trigger
source distribution at configs/netdevices.sql. You will need to populate the
database full of rows with the columns above and set
NETDEVICES_SOURCE the absolute path of the database file.

Developing with NetDevices

First things first, you must instantiate NetDevices. It
has three things it requires before you can properly do this:

Note

If you do not want to load ACL associations you may skip them by passing
with_acls=False to NetDevices and then you only need
to satisfy the first requirement. A this time it is not possible to
globally disable ACL support, so this will only work for the purpose of
this walkthrough or when you manually instantiate NetDevices objects.

	The NETDEVICES_SOURCE file must be readable and must properly
parse using one of the default loaders formats supported in
NETDEVICES_LOADERS (see above);

	An instance of Redis (you may skip this by passing with_acls=False
to the NetDevices constructor).

	The path to autoacl.py must be valid, and must properly parse (you
may skip this if you just want to ignore the warnings for now).

How it works

The NetDevices object itself is an immutable,
dictionary-like Singleton [http://en.wikipedia.org/wiki/Singleton_pattern] object. If you don’t know what a Singleton is, it
means that there can only be one instance of this object in any program. The
actual instance object itself an instance of the inner
_actual class which is stored in the
module object as NetDevices._Singleton. This is done as a performance boost
because many Trigger components require a NetDevices instance, and if we had to
keep creating new ones, we’d be waiting each time one had to parse
NETDEVICES_SOURCE all over again.

Upon startup, each device object/element/row found within
NETDEVICES_SOURCE is used to create a
NetDevice object. This object pulls in ACL associations
from AclsDB.

The Singleton Pattern

The NetDevices module object has a _Singleton attribute that defaults to
None. Upon creating an instance, this is populated with the
_actual instance:

>>> nd = NetDevices()
>>> nd._Singleton
<trigger.netdevices._actual object at 0x2ae3dcf48710>
>>> NetDevices._Singleton
<trigger.netdevices._actual object at 0x2ae3dcf48710>

This is how new instances are prevented. Whenever you create a new reference by
instantiating NetDevices again, what you are really doing is creating a reference
to NetDevices._Singleton:

>>> other_nd = NetDevices()
>>> other_nd._Singleton
<trigger.netdevices._actual object at 0x2ae3dcf48710>
>>> nd._Singleton is other_nd._Singleton
True

The only time this would be an issue is if you needed to change the actual contents
of your object (such as when debugging or passing production_only=False).
If you need to do this, set the value to None:

>>> NetDevices._Singleton = None

Then the next call to NetDevices() will start from
scratch. Keep in mind because of this pattern it is not easy to have more than
one instance (there are ways but we’re not going to list them here!). All
existing instances will inherit the value of NetDevices._Singleton:

>>> third_nd = NetDevices(production_only=False)
>>> third_nd._Singleton
<trigger.netdevices._actual object at 0x2ae3dcf506d0>
>>> nd._Singleton
<trigger.netdevices._actual object at 0x2ae3dcf506d0>
>>> third_nd._Singleton is nd._Singleton
True

Instantiating NetDevices

Throughout the Trigger code, the convention when instantiating and referencing a
NetDevices instance, is to assign it to the variable
nd. All examples will use this, so keep that in mind:

>>> from trigger.netdevices import NetDevices
>>> nd = NetDevices()
>>> len(nd)
3

By default, this only includes any devices for which adminStatus (aka
administrative status) is PRODUCTION. This means that the device is used
in your production environment. If you would like you get all devices regardless
of adminStatus, you must pass production_only=False to the constructor:

>>> from trigger.netdevices import NetDevices
>>> nd = NetDevices(production_only=False)
>>> len(nd)
4

The included sample metadata files contains one device that is marked as
NON-PRODUCTION.

What’s in a NetDevice?

A NetDevice object has a number of attributes you can use
creatively to correlate
or identify them:

>>> dev = nd.find('test1-abc')
>>> dev
<NetDevice: test1-abc.net.aol.com>

Printing it displays the hostname:

>>> print dev
test1-abc.net.aol.com

You can dump the values:

>>> dev.dump()

 Hostname: test1-abc.net.aol.com
 Owning Org.: 12345678 - Network Engineering
 Owning Team: Data Center
 OnCall Team: Data Center

 Vendor: Juniper (JUNIPER)
 Make: M40 INTERNET BACKBONE ROUTER
 Model: M40-B-AC
 Type: ROUTER
 Location: LAB CR10 16ZZ

 Project: Test Lab
 Serial: 987654321
 Asset Tag: 0000012345
 Budget Code: 1234578 (Data Center)

 Admin Status: PRODUCTION
 Lifecycle Status: INSTALLED
 Operation Status: MONITORED
 Last Updated: 2010-07-19 19:56:32.0

You can reference them as attributes:

>>> dev.nodeName, dev.vendor, dev.deviceType
('test1-abc.net.aol.com', <Vendor: Juniper>, 'ROUTER')

There are some special methods to perform identity tests:

>>> dev.is_router(), dev.is_switch(), dev.is_firewall()
(True, False, False)

You can view the ACLs assigned to the device:

Note

If you have passed with_acls=False, none of these attributes will be
populated and will instead return an empty set()).

>>> dev.explicit_acls
set(['abc123'])
>>> dev.implicit_acls
set(['juniper-router.policer', 'juniper-router-protect'])
>>> dev.acls
set(['juniper-router.policer', 'juniper-router-protect', 'abc123'])

Or get the next time it’s ok to make changes to this device (more on this
later):

>>> dev.bounce.next_ok('green')
datetime.datetime(2011, 7, 13, 9, 0, tzinfo=<UTC>)
>>> print dev.bounce.status()
red

Searching for devices

Like a dictionary

Since the object is like a dictionary, you may reference devices as keys by
their hostnames:

>>> nd
{'test2-abc.net.aol.com': <NetDevice: test2-abc.net.aol.com>,
 'test1-abc.net.aol.com': <NetDevice: test1-abc.net.aol.com>,
 'lab1-switch.net.aol.com': <NetDevice: lab1-switch.net.aol.com>,
 'fw1-xyz.net.aol.com': <NetDevice: fw1-xyz.net.aol.com>}
>>> nd['test1-abc.net.aol.com']
<NetDevice: test1-abc.net.aol.com>

You may also perform any other operations to iterate devices as you would with
a dictionary (.keys(), .itervalues(), etc.).

Special methods

There are a number of ways you can search for devices. In all cases, you are
returned a list.

The simplest usage is just to list all devices:

>>> nd.all()
[<NetDevice: test2-abc.net.aol.com>, <NetDevice: test1-abc.net.aol.com>,
 <NetDevice: lab1-switch.net.aol.com>, <NetDevice: fw1-xyz.net.aol.com>]

Using all() is going to be very rare, as you’re more likely to work with a
subset of your
devices.

Find a device by its shortname (minus the domain):

>>> nd.find('test1-abc')
<NetDevice: test1-abc.net.aol.com>

List devices by type (switches, routers, or firewalls):

>>> nd.list_routers()
[<NetDevice: test2-abc.net.aol.com>, <NetDevice: test1-abc.net.aol.com>]
>>> nd.list_switches()
[<NetDevice: lab1-switch.net.aol.com>]
>>> nd.list_firewalls()
[<NetDevice: fw1-xyz.net.aol.com>]

Perform a case-sensitive search on any field (it defaults to nodeName):

>>> nd.search('test')
[<NetDevice: test2-abc.net.aol.com>, <NetDevice: test1-abc.net.aol.com>]
>>> nd.search('test2')
[<NetDevice: test2-abc.net.aol.com>]
>>> nd.search('NON-PRODUCTION', 'adminStatus')
[<NetDevice: test2-abc.net.aol.com>]

Or you could just roll your own list comprehension to do the same thing:

>>> [d for d in nd.all() if d.adminStatus == 'NON-PRODUCTION']
[<NetDevice: test2-abc.net.aol.com>]

Perform a case-INsenstive search on any number of fields as keyword arguments:

>>> nd.match(oncallname='data center', adminstatus='non')
[<NetDevice: test2-abc.net.aol.com>]
>>> nd.match(vendor='netscreen')
[<NetDevice: fw1-xyz.net.aol.com>]

Helper function

Another nifty tool within the module is device_match,
which returns a NetDevice object:

>>> from trigger.netdevices import device_match
>>> device_match('test')
2 possible matches found for 'test':
 [1] test1-abc.net.aol.com
 [2] test2-abc.net.aol.com
 [0] Exit

Enter a device number: 2
<NetDevice: test2-abc.net.aol.com>

If there are multiple matches, it presents a prompt and lets you choose,
otherwise it chooses for you:

>>> device_match('fw')
Matched 'fw1-xyz.net.aol.com'.
<NetDevice: fw1-xyz.net.aol.com>

Plugins

This document describes the use and creation of plugins.

	Using Plugins

	Installation

	Inclusion

	Updating

	Creating

	Useful Modules

	Examples

Using Plugins

Installation

Plugins are installed like any other python package on the system.
Be sure to note the absolute path where the plugin is installed.

Inclusion

Permanent

In your ‘’/etc/trigger/settings.py’’ file, add the absolute path
of the plugin to the COMMANDO_PLUGINS variable as a list:

COMMANDO_PLUGINS = [
 'trigger.contrib.config_device',
 'trigger.contrib.show_clock',
 'bacon.cool_plugin'
]

Testing

If you are testing, you can easily add your new package to the list by appending the
new package to the COMMANDO_PLUGINS variable:

from trigger.conf import settings
settings.COMMANDO_PLUGINS.append('mrawesome.plugin.bacon')

from within your test script.

CLI

Work in progress. The idea is to ssh to the server (via manhole) into a python
interactive shell.

Updating

If you want to install a new version of a plugin, first, you much update the
plugin package on all workers and servers.

Restarting the trigger processes on all workers and servers will pick up
the new version automatically.

Alternatively, you can use the CLI method above with the optional ‘force=True’
argument to force Trigger
to reload the module without restarting any processes.

Creating

A plugin to be used for Trigger/Commando is a standalone python module. The
loading of a plugin will create both a Celery task as well as an XMLRPC method.

The module is required at a minimum to define:

task_name
xmlrpc_<task_name>

A super simple example:

from trigger.contrib.commando import CommandoApplication

task_name = 'show_version'
def xmlrpc_show_version(*args,**kwargs):
 sc = ShowVersion(*args,**kwargs)
 d = sc.run()
 return d

class ShowVersion(CommandoApplication):
 commands = ['show version']

Useful Modules

	trigger.contrib.commando.CommandoApplication

CommandoApplication is the base class for creating plugins that run
commands on network devices.

	trigger.utils.xmltodict

This is https://github.com/martinblech/xmltodict included here for convenience.

	trigger.utils.strip_juniper_namespace

strip_juniper_namespace provides a post_processing script to strip
juniper namespace. This is useful because the namespace makes parsing the JunOS XML
a horrible experience, especially because JunOS embeds the software version into
the namespace.

Examples

Using xmltodict to process Juniper xml output:

class ShowUptime(CommandoApplication):

 def to_juniper(self, dev, commands=None, extra=None):
 cmd = Element('get-system-uptime-information')
 self.commands = [cmd]
 return self.commands

 def from_juniper(self, data, device):
 for xml in data:
 jdata = xmltodict.parse(
 ET.tostring(xml),
 postprocessor=strip_juniper_namespace,
 xml_attribs=False
)
 sysupinfo = jdata['rpc-reply']['system-uptime-information']
 currtime = sysupinfo['current-time']['date-time']
 res = {'current-time':currtime}
 results.append(res)
 self.store_results(device, results)

Managing Credentials with .tacacsrc

About

The tacacsrc module provides an abstract interface to the management
and storage of user credentials in the .tacacsrc file. This is used
throughout Trigger to automatically retrieve credentials for a user whenever
they connect to devices.

How it works

The Tacacsrc class is the core interface for encrypting
credentials when they are stored, and decrypting the credentials when they are
retrieved. A unique .tacacsrc file is stored in each user’s home directory,
and is forcefully set to be readable only (permissions: 0600) by the owning
user.

There are two implementations, the first of which is the only one that is
officially supported at this time, and which is properly documented.

	Symmetric key encryption

This method is the default. It relies on a shared key to be stored in a file
somewhere on the system. The location of this file can be customized in
settings.py using TACACSRC_KEYFILE.

The default location for this file is /etc/trigger/.tackf. If this file
is not found, Trigger will complain loudly when it tries to access it.

This method requires that the key file be world-readable, so that the key
can be used to encrypt and decrypt credentials. The risk of exploitation is
reduced by ensuring that each user’s .tacacsrc has strict file
permissions and that only the user encrypting the file can decrypt it.

	GPG encryption

This method is experimental but is intended to be the long-term replacement
for the shared key method. To enable GPG encryption, set
USE_GPG_AUTH to True within settings.py.

This method is very secure because there is no centralized passphrase used
for encryption. Each user chooses their own.

Usage

Creating a .tacacsrc

When you create an instance of Tacacsrc, it will try to
read the .tacacsrc file. If this file is not found, or cannot be properly
parsed, it will be initialized:

>>> from trigger import tacacsrc
>>> tcrc = tacacsrc.Tacacsrc()
/home/jathan/.tacacsrc not found, generating a new one!

Updating credentials for device/realm 'tacacsrc'
Username: jathan
Password:
Password (again):

If you inspect the .tacacsrc file, you’ll see that both the username and
password are encrypted:

% cat ~/.tacacsrc
Saved by trigger.tacacsrc at 2012-06-23 11:38:51 PDT

aol_uname_ = uiXq7eHEq2A=
aol_pwd_ = GUpzkuFJfN8=

Retrieving stored credentials

Credentials can be cached by realm. By default this realm is 'aol', but you
can change that in settings.py using DEFAULT_REALM. Credentials
are stored as a dictionary under the .creds attribute, keyed by the realm
for each set of credentials:

>>> tcrc.creds
{'aol': Credentials(username='jathan', password='boguspassword', realm='aol')}

There is also a module-level function,
get_device_password(), that takes a realm name as an
argument, which will instantiate Tacacsrc for you and
returns the credentials for the realm:

>>> tacacsrc.get_device_password('aol')
Credentials(username='jathan', password='boguspassword', realm='aol')

Updating stored credentials

The module-level function update_credentials() will prompt
a user to update their stored credentials. It expects the realm key you would
like to update and an optional username you would like to use. If you don’t
specify a user, the existing username for the realm is kept.

>>> tacacsrc.update_credentials('aol')

Updating credentials for device/realm 'aol'
Username [jathan]:
Password:
Password (again):

Credentials updated for user: 'jathan', device/realm: 'aol'.
True
>>> tcrc.creds
{'aol': Credentials(username='jathan', password='panda', realm='aol')}

This function will return True upon a successful update to .tacacsrc.

Using GPG encryption

Warning

While this functionality has been tested, it is still considered to be
experimental because it requires so many manual steps! If you do wish to
proceed, please consider providing us feedback on how we can streamline this
integration!

Before you proceed, you must make sure to have gnupg2 and gnupg-agent
installed on your system.

Note

For now, it is still required that you provide a file at the location
specified by TACACSRC_KEYFILE in settings.py. This file is
not used, but is still loaded so must be present.

Enabling GPG

In settings.py set USE_GPG_AUTH to True.

Generating your GPG key

Note

Generating a key can take a long time because it requires the generation of
a large amount of random numbers. We recommend you install rng-tools to
help improve the speed and entropy of generating cryptographic keys.

Execute:

gpg2 --gen-key

When asked fill these in with the values appropriate for you:

Real name: jathan
Email address: jathan@gmail.com
Comment: Jathan McCollum

It will confirm:

You selected this USER-ID:
 "jathan (Jathan McCollum) <jathan@host.example.com>

Here is a snippet to try and make this part of the core API, but is not yet
implemented:

>>> import os, pwd, socket
>>> pwd.getpwnam(os.getlogin()).pw_gecos
'Jathan McCollum'
>>> socket.gethostname()
'wtfpwn.bogus.aol.com'
>>> h = socket.gethostname()
>>> u = os.getlogin()
>>> n = pwd.getpwnam(u).pw_gecos
>>> e = '%s@%s' % (u,h)
>>> print '%s (%s) <%s>' % (u,n,e)
jathan (Jathan McCollum) <jathan@wtfpwn.bogus.aol.com'

Convert your tacacsrc to GPG

Assuming you already have a “legacy” .tacacsrc file, execute:

tacacsrc2gpg.py

It will want to generate your GPG key. This can take a VERY LONG time. We need a
workaround for this.

And then it outputs:

This will overwrite your .tacacsrc.gpg and all gnupg configuration, are you sure? (y/N)
Would you like to convert your OLD tacacsrc configuration file to your new one? (y/N)
Converting old tacacsrc to new kind :)
OLD
/opt/bcs/packages/python-modules-2.0/lib/python/site-packages/simian/tacacsrc.py:125: DeprecationWarning: os.popen2 is deprecated. Use the subprocess module.
 (fin,fout) = os.popen2('gpg2 --yes --quiet -r %s -e -o %s' % (self.username, self.file_name))

Update your gpg.conf

Trigger should also do this for us, but alas…

Add 'use-agent' to ~/.gnupg/gpg.conf:

echo 'use-agent\n' > .gnupg/gpg.conf

This will allow you to unlock your GPG store at the beginning of the day, and
have the gpg-agent broker the communication encryption/decryption of the file
for 24 hours.

See if it works

	Connect to a device.

	It will prompt for passphrase

	…and connected! (aka Profit)

Other utilities

You may check if a user has a GPG-enabled credential store:

>>> from trigger import tacacsrc
>>> tcrc = tacacsrc.Tacacsrc()
>>> tcrc.user_has_gpg()
False

Convert .tacacsrc to .tacacsrc.gpg:

>>> tacacsrc.convert_tacacsrc()

Usage Examples

To illustrate how Trigger works, here are some basic examples of leveraging the
API.

For these examples to work you must have already installed and configured Trigger, so if you
haven’t already please do that first!

Simple Examples

Working with metadata

Get a count of all your devices:

>>> from trigger.netdevices import NetDevices
>>> nd = NetDevices()
>>> len(nd)
5539

(Whoa! That’s a lot!) Let’s look up a device.

>>> dev = nd.find('edge1-abc')
>>> dev.vendor, dev.deviceType
(<Vendor: Juniper>, 'ROUTER')
>>> dev.has_ssh()
True

Get an interactive shell

Since this device has SSH, let’s connect to it:

>>> dev = nd.find('edge1-abc')
>>> dev.connect()
Connecting to edge1-abc.net.aol.com. Use ^X to exit.

Fetching credentials from /home/jathan/.tacacsrc
--- JUNOS 10.2S6.3 built 2011-01-22 20:06:27 UTC
jathan@edge1-abc>

Work with access-lists

Let’s start with a simple Cisco ACL:

>>> from trigger.acl import parse
>>> aclobj = parse('access-list 123 permit tcp any host 10.20.30.40 eq 80')
>>> aclobj.terms
[<Term: None>]

And convert it to Juniper format:

>>> aclobj.name_terms() # Juniper policy terms must have names
>>> aclobj.terms
[<Term: T1>]
>>> print '\n'.join(aclobj.output(format='junos'))
filter 123 {
 term T1 {
 from {
 destination-address {
 10.20.30.40/32;
 }
 protocol tcp;
 destination-port 80;
 }
 then {
 accept;
 }
 }
}

Cache your login credentials

Trigger will encrypt and store your credentials in a file called .tacacsrc in your home directory. We already had them cached in the previous
examples, so I removed it and then:

>>> from trigger.tacacsrc import Tacacsrc
>>> tcrc = Tacacsrc()
/home/jathan/.tacacsrc not found, generating a new one!

Updating credentials for device/realm 'tacacsrc'
Username: jathan
Password:
Password (again):
>>> tcrc.creds['aol']
Credentials(username='jathan', password='boguspassword', realm='tacacsrc')

Passwords can be cached by realm. By default this realm is 'aol', but you
can change that in the settings. Your credentials are encrypted and decrypted
using a shared key. A more secure experimental GPG-encrypted method is in the
works.

Login to a device using the gong script

Trigger includes a simple tool for end-users to connect to devices called
gong:

$ gong foo1-cisco
Connecting to foo1-cisco.net.aol.com. Use ^X to exit.

Fetching credentials from /home/jathan/.tacacsrc
foo1-cisco#
foo1-cisco#show clock
20:52:05.777 UTC Sat Jun 23 2012
foo1-cisco#

Partial hostnames are supported, too:

$ gong foo1
2 possible matches found for 'foo1':
[1] foo1-abc.net.aol.com
[2] foo1-xyz.net.aol.com
[0] Exit

Enter a device number: 2
Connecting to foo1-xyz.net.aol.com. Use ^X to exit.

Fetching credentials from /home/jathan/.tacacsrc
foo1-xyz#

Slightly Advanced Examples

Execute commands asynchronously using Twisted

This is a little more advanced… so we saved it for last.

Trigger uses Twisted, which is a callback-based event loop. Wherever possible
Twisted’s implementation details are abstracted away, but the power is there
for those who choose to wield it. Here’s a super simplified example of how this
might be accomplished:

from trigger.netdevices import NetDevices
from twisted.internet import reactor

nd = NetDevices()
dev = nd.find('foo1-abc')

def print_result(data):
 """Display results from a command"""
 print 'Result:', data

def stop_reactor(data):
 """Stop the event loop"""
 print 'Stopping reactor'
 if reactor.running:
 reactor.stop()

Create an event chain that will execute a given list of commands on this
device
async = dev.execute(['show clock'])

When we get results from the commands executed, call this
async.addCallback(print_result)

Once we're out of commands, or we an encounter an error, call this
async.addBoth(stop_reactor)

Start the event loop
reactor.run()

Which outputs:

Result: ['21:27:46.435 UTC Sat Jun 23 2012\n']
Stopping reactor

Observe, however, that this only communicated with a single device.

Execute commands asynchronously using the Commando API

Commando tries to hide Twisted’s implementation details so you
don’t have to deal with callbacks, while also implementing a worker pool so
that you may easily communicate with multiple devices in parallel.

This is a base class that is intended to be extended to perform the operations
you desire. Here is a basic example of how we might perform the same example
above using Commando instead, but also communicating with a
second device in parallel:

from trigger.cmds import Commando

class ShowClock(Commando):
 """Execute 'show clock' on a list of Cisco devices."""
 vendors = ['cisco']
 commands = ['show clock']

if __name__ == '__main__':
 device_list = ['foo1-abc.net.aol.com', 'foo2-xyz.net.aol.com']
 showclock = ShowClock(devices=device_list)
 showclock.run() # Commando exposes this to start the event loop

 print '\nResults:'
 print showclock.results

Which outputs:

Sending ['show clock'] to foo2-xyz.net.aol.com
Sending ['show clock'] to foo1-abc.net.aol.com
Received ['21:56:44.701 UTC Sat Jun 23 2012\n'] from foo2-xyz.net.aol.com
Received ['21:56:44.704 UTC Sat Jun 23 2012\n'] from foo1-abc.net.aol.com

Results:
{
 'foo1-abc.net.aol.com': {
 'show clock': '21:56:44.704 UTC Sat Jun 23 2012\n'
 },
 'foo2-xyz.net.aol.com': {
 'show clock': '21:56:44.701 UTC Sat Jun 23 2012\n'
 }
}

Get structured data back using the Commando API

Commando will attempt to parse the raw command output into a
nested dict. The results from each worker are parsed through the TextFSM [http://jedelman.com/home/programmatic-access-to-cli-devices-with-textfsm/]
templating engine, if a matching template file exists within the
TEXTFSM_TEMPLATE_DIR directory.

For this to work you must have an attribute on your netdevices model that
specifies the network operating system, e.g. IOS, NX-OS or JUNOS. This will be
used to correlate the right template for a given device based on the naming
convention used by the TextFSM templates.

NetDevice Object:

{
 "adminStatus": "PRODUCTION",
 "enablePW": "cisco",
 "OOBTerminalServerTCPPort": "5005",
 "assetID": "0000012345",
 "OOBTerminalServerNodeName": "ts1",
 "onCallEmail": "nobody@aol.net",
 "onCallID": "17",
 "OOBTerminalServerFQDN": "foo1-abc.net.aol.com",
 "owner": "12345678 - Network Engineering",
 "OOBTerminalServerPort": "5",
 "onCallName": "Data Center",
 "nodeName": "foo1-abc.net.aol.com",
 "make": "M40 INTERNET BACKBONE ROUTER",
 "budgetCode": "1234578",
 "budgetName": "Data Center",
 "operationStatus": "MONITORED",
 "deviceType": "ROUTER",
 "lastUpdate": "2010-07-19 19:56:32.0",
 "authMethod": "tacacs",
 "projectName": "Test Lab",
 "barcode": "0101010101",
 "site": "LAB",
 "loginPW": "cisco",
 "lifecycleStatus": "INSTALLED",
 "manufacturer": "CISCO",
 "operatingSystem": "IOS",
 "layer3": "1",
 "layer2": "1",
 "room": "CR10",
 "layer4": "1",
 "serialNumber": "987654321",
 "owningTeam": "Data Center",
 "coordinate": "16ZZ",
 "model": "M40-B-AC",
 "OOBTerminalServerConnector": "C"
}

Template Naming Convention:

{VENDOR}_{OS}_{COMMAND}.template

Template Directory Structure:

$ tree vendor
vendor
└── ntc_templates
 ├── cisco_ios_show_clock.template
 ├── cisco_ios_show_inventory.template
 ├── cisco_ios_show_ip_int_brief.template
 ├── cisco_ios_show_version.template
 ├── cisco_nxos_show_clock.template
 ├── cisco_nxos_show_inventory.template
 ├── cisco_nxos_show_version.template

TextFSM Commando Implementation:

import json
from trigger.cmds import Commando

class ShowMeTheMoney(Commando):
 """Execute the following on a list of Cisco devices:
 'show clock'
 'show version'
 'show ip int brief'
 'show inventory'
 'show run | in cisco'
 """
 vendors = ['cisco']
 commands = [
 'show clock',
 'show version',
 'show ip int brief',
 'show inventory',
 'show run | in cisco'
]

if __name__ == '__main__':
 device_list = ['foo1-abc.net.aol.com'']
 showstuff = ShowMeTheMoney(devices=device_list)
 showstuff.run() # Commando exposes this to start the event loop

 print '\nUnparsed Results:\n'
 json.dumps(showstuff.results, indent=4)

 print '\nParsed Results:\n'
 json.dumps(showstuff.parsed_results, indent=4)

Which outputs:

Unparsed Results:

{
 "r1.demo.local": {
 "show inventory": "NAME: \"Chassis\", DESCR: \"Cisco CSR1000V Chassis\"\r\nPID: CSR1000V , VID: V00, SN: 9G0T83AE5II\r\n\r\nNAME: \"module R0\", DESCR: \"Cisco CSR1000V Route Processor\"\r\nPID: CSR1000V , VID: V00, SN: JAB1303001C\r\n\r\nNAME: \"module F0\", DESCR: \"Cisco CSR1000V Embedded Services Processor\"\r\nPID: CSR1000V , VID: , SN: \r\n\r\n\r\n",
 "show run | in cisco": "username cisco secret 5 1zh1E$8GjiAf7YYDFPkLBYWMgpI0\r\n",
 "show ip int brief": "Interface IP-Address OK? Method Status Protocol\r\nGigabitEthernet1 10.20.1.10 YES NVRAM up up \r\nGigabitEthernet2 unassigned YES NVRAM administratively down down \r\nGigabitEthernet3 unassigned YES NVRAM administratively down down \r\nGigabitEthernet4 unassigned YES NVRAM administratively down down \r\n",
 "show version": "Cisco IOS XE Software, Version 03.12.00.S - Standard Support Release\r\nCisco IOS Software, CSR1000V Software (X86_64_LINUX_IOSD-UNIVERSALK9-M), Version 15.4(2)S, RELEASE SOFTWARE (fc2)\r\nTechnical Support: http://www.cisco.com/techsupport\r\nCopyright (c) 1986-2014 by Cisco Systems, Inc.\r\nCompiled Wed 26-Mar-14 21:09 by mcpre\r\n\r\n\r\nCisco IOS-XE software, Copyright (c) 2005-2014 by cisco Systems, Inc.\r\nAll rights reserved. Certain components of Cisco IOS-XE software are\r\nlicensed under the GNU General Public License (\"GPL\") Version 2.0. The\r\nsoftware code licensed under GPL Version 2.0 is free software that comes\r\nwith ABSOLUTELY NO WARRANTY. You can redistribute and/or modify such\r\nGPL code under the terms of GPL Version 2.0. For more details, see the\r\ndocumentation or \"License Notice\" file accompanying the IOS-XE software,\r\nor the applicable URL provided on the flyer accompanying the IOS-XE\r\nsoftware.\r\n\r\n\r\nROM: IOS-XE ROMMON\r\n\r\nR1 uptime is 1 minute\r\nUptime for this control processor is 3 minutes\r\nSystem returned to ROM by reload\r\nSystem image file is \"bootflash:packages.conf\"\r\nLast reload reason: <NULL>\r\n\r\n\r\n\r\nThis product contains cryptographic features and is subject to United\r\nStates and local country laws governing import, export, transfer and\r\nuse. Delivery of Cisco cryptographic products does not imply\r\nthird-party authority to import, export, distribute or use encryption.\r\nImporters, exporters, distributors and users are responsible for\r\ncompliance with U.S. and local country laws. By using this product you\r\nagree to comply with applicable laws and regulations. If you are unable\r\nto comply with U.S. and local laws, return this product immediately.\r\n\r\nA summary of U.S. laws governing Cisco cryptographic products may be found at:\r\nhttp://www.cisco.com/wwl/export/crypto/tool/stqrg.html\r\n\r\nIf you require further assistance please contact us by sending email to\r\nexport@cisco.com.\r\n\r\nLicense Level: limited\r\nLicense Type: Default. No valid license found.\r\nNext reload license Level: limited\r\n\r\ncisco CSR1000V (VXE) processor with 804580K/6147K bytes of memory.\r\nProcessor board ID 9G0T83AE5II\r\n4 Gigabit Ethernet interfaces\r\n32768K bytes of non-volatile configuration memory.\r\n2097152K bytes of physical memory.\r\n7774207K bytes of virtual hard disk at bootflash:.\r\n\r\nConfiguration register is 0x2102\r\n\r\n",
 "show clock": "*06:51:44.460 UTC Tue Mar 15 2016\r\n"
 }
}

Parsed Results:

{
 "foo1-abc.net.aol.com": {
 "show inventory": {
 "vid": [
 "V00",
 "V00",
 ""
],
 "pid": [
 "CSR1000V",
 "CSR1000V",
 "CSR1000V"
],
 "name": [
 "Chassis",
 "module R0",
 "module F0"
],
 "descr": [
 "Cisco CSR1000V Chassis",
 "Cisco CSR1000V Route Processor",
 "Cisco CSR1000V Embedded Services Processor"
],
 "sn": [
 "9G0T83AE5II",
 "JAB1303001C",
 ""
]
 },
 "show version": {
 "running_image": [
 "packages.conf"
],
 "hostname": [
 "R1"
],
 "config_register": [
 "0x2102"
],
 "uptime": [
 "37 minutes"
],
 "hardware": [
 "CSR1000V"
],
 "version": [
 "15.4(2)S"
],
 "serial": [
 ""
]
 },
 "show ip int brief": {
 "status": [
 "up",
 "administratively down",
 "administratively down",
 "administratively down"
],
 "intf": [
 "GigabitEthernet1",
 "GigabitEthernet2",
 "GigabitEthernet3",
 "GigabitEthernet4"
],
 "ipaddr": [
 "10.20.1.10",
 "unassigned",
 "unassigned",
 "unassigned"
],
 "proto": [
 "up",
 "down",
 "down",
 "down"
]
 },
 "show clock": {
 "dayweek": [
 "Thu"
],
 "year": [
 "2016"
],
 "month": [
 "Mar"
],
 "time": [
 "23:22:54.994"
],
 "timezone": [
 "UTC"
],
 "day": [
 "10"
]
 }
 }
}

API Documentation

	trigger.acl — ACL parsing library

	trigger.changemgmt — Change management library

	trigger.cmds — Command execution library

	trigger.conf — Configuration & Settings module

	trigger.contrib — Extra, optional tools that solve common problems, extend, or modify core functionality.

	trigger.exceptions — Trigger’s Exceptions

	trigger.gorc — Determine commands to run upon login

	trigger.netdevices — Network device metadata library

	trigger.netscreen — Juniper NetScreen firewall parser

	trigger.rancid — RANCID Compatibility Library

	trigger.tacacsrc — Network credentials library

	trigger.twister — Asynchronous device interaction library

	trigger.utils — CLI tools and utilities library

trigger.acl — ACL parsing library

Warning

Much of the functionality in this library WILL NOT work without
Redis installed and WITH_ACLS set to True in
your settings.py. If you have ACL support disabled, proceed at your own
risk!

Trigger’s ACL parser.

This library contains various modules that allow for parsing, manipulation,
and management of network access control lists (ACLs). It will parse a complete
ACL and return an ACL object that can be easily translated to any supported
vendor syntax.

	
trigger.acl.literals(d)

	Longest match of all the strings that are keys of ‘d’.

	
trigger.acl.parse(input_data)

	Parse a complete ACL and return an ACL object. This should be the only
external interface to the parser.

>>> from trigger.acl import parse
>>> aclobj = parse("access-list 123 permit tcp any host 10.20.30.40 eq 80")
>>> aclobj.terms
[<Term: None>]

	Parameters

	input_data – An ACL policy as a string or file-like object.

	
trigger.acl.S(prod)

	Wrap your grammar token in this to call your helper function with a list
of each parsed subtag, instead of the raw text. This is useful for
performing modifiers.

	Parameters

	prod – The parser product.

	
class trigger.acl.ACL(name=None, terms=None, format=None, family=None, interface_specific=False)

	An abstract access-list object intended to be created by the parse()
function.

	
name_terms()

	Assign names to all unnamed terms.

	
output(format=None, *largs, **kwargs)

	Output the ACL data in the specified format.

	
output_ios(replace=False)

	Output the ACL in IOS traditional format.

	Parameters

	replace – If set the ACL is preceded by a no access-list line.

	
output_ios_brocade(replace=False, receive_acl=False)

	Output the ACL in Brocade-flavored IOS format.

The difference between this and “traditional” IOS are:

	Stripping of comments

	Appending of ip rebind-acl or ip rebind-receive-acl line

	Parameters

	
	replace – If set the ACL is preceded by a no access-list line.

	receive_acl – If set the ACL is suffixed with a ip
rebind-receive-acl' instead of ``ip rebind-acl.

	
output_ios_named(replace=False)

	Output the ACL in IOS named format.

	Parameters

	replace – If set the ACL is preceded by a no access-list line.

	
output_iosxr(replace=False)

	Output the ACL in IOS XR format.

	Parameters

	replace – If set the ACL is preceded by a no ipv4 access-list line.

	
output_junos(replace=False, family=None)

	Output the ACL in JunOS format.

	Parameters

	
	replace – If set the ACL is wrapped in a
firewall { replace: ... } section.

	family – If set, the value is used to wrap the ACL in a
family inet { ...} section.

	
strip_comments()

	Strips all comments from ACL header and all terms.

	
class trigger.acl.ACLProcessor

	

	
class trigger.acl.Comment(data)

	Container for inline comments.

	
output_ios()

	Output the Comment to IOS traditional format.

	
output_ios_named()

	Output the Comment to IOS named format.

	
output_iosxr()

	Output the Comment to IOS XR format.

	
output_junos()

	Output the Comment to JunOS format.

	
class trigger.acl.Matches(d=None, **kwargs)

	Container class for Term.match object used for membership tests on
access checks.

	
ios_address_str(addrs)

	Convert a list of addresses to IOS-style stupid strings.

	Parameters

	addrs – List of IP address objects.

	
ios_port_str(ports)

	Convert a list of tuples back to ranges, then to strings.

	Parameters

	ports – A list of port tuples, e.g. [(0,65535), (1,2)].

	
junos_str(pair)

	Convert a 2-tuple into a hyphenated string, e.g. a range of ports. If
not a tuple, tries to treat it as IPs or failing that, casts it to a
string.

	Parameters

	pair – The 2-tuple to convert.

	
output_ios()

	Return a string of IOS ACL bodies.

	
output_junos()

	Return a list that can form the from { ... } clause of the term.

	
class trigger.acl.Policer(name, data)

	Container class for policer policy definitions. This is a dummy class for
now, that just passes it through as a string.

	
class trigger.acl.PolicerGroup(format=None)

	Container for Policer objects. Juniper only.

	
class trigger.acl.Protocol(arg)

	A protocol object used for access membership tests in Term objects.
Acts like an integer, but stringify into a name if possible.

	
class trigger.acl.RangeList(data=None)

	A type which stores ordered sets, with efficient handling of
ranges. It can also store non-incrementable terms as an sorted set
without collapsing into ranges.

This is currently used to just store match conditions (e.g. protocols,
ports), but could be fleshed out into a general-purpose class. One
thing to think about is how/whether to handle a list of tuples as distinct
from a list of ranges. Should we just store them as xrange objects?
Should the object appear as discrete elements by default, for example
in len(), with the collapsed view as a method, or should we keep it
as it is now? All the current uses of this class are in this file
and have unit tests, so when we decided what the semantics of the
generalized module ought to be, we can make it so without worry.

	
expanded()

	Return a list with all ranges converted to discrete elements.

	
class trigger.acl.Remark(data)

	IOS extended ACL “remark” lines automatically become comments when
converting to other formats of ACL.

	
output_ios_named()

	Output the Remark to IOS named format.

	
class trigger.acl.Term(name=None, action='accept', match=None, modifiers=None, inactive=False, isglobal=False, extra=None)

	An individual term from which an ACL is made

	
output(format, *largs, **kwargs)

	Output the term to the specified format

	Parameters

	format – The desired output format.

	
output_ios(prefix=None, acl_name=None)

	Output term to IOS traditional format.

	Parameters

	
	prefix – Prefix to use, default: ‘access-list’

	acl_name – Name of access-list to display

	
output_ios_named(prefix='', *args, **kwargs)

	Output term to IOS named format.

	
output_iosxr(prefix='', *args, **kwargs)

	Output term to IOS XR format.

	
output_junos(*args, **kwargs)

	Convert the term to JunOS format.

	
set_action_or_modifier(action)

	Add or replace a modifier, or set the primary action. This method exists
for the convenience of parsers.

	
class trigger.acl.TermList

	Container class for Term objects within an ACL object.

	
class trigger.acl.TIP(data, **kwargs)

	Class based on IPy.IP, but with extensions for Trigger.

Currently, only the only extension is the ability to negate a network
block. Only used internally within the parser, as it’s not complete
(doesn’t interact well with IPy.IP objects). Does not handle IPv6 yet.

trigger.acl.autoacl

This module controls when ACLs get auto-applied to network devices,
in addition to what is specified in acls.db.

This is primarily used by AclsDB to populate the
implicit ACL-to-device mappings.

No changes should be made to this module. You must specify the path to the
autoacl logic inside of settings.py as AUTOACL_FILE. This will be
exported as autoacl so that the module path for the autoacl()
function will still be trigger.autoacl.autoacl().

This trickery allows us to keep the business-logic for how ACLs are mapped to
devices out of the Trigger packaging.

If you do not specify a location for AUTOACL_FILE or the module cannot be
loaded, then a default autoacl() function ill be used.

	
trigger.acl.autoacl.autoacl(dev, explicit_acls=None)

	Given a NetDevice object, returns a set of implicit (auto) ACLs. We
require a device object so that we don’t have circular dependencies
between netdevices and autoacl.

This function MUST return a set() of acl names or you will break
the ACL associations. An empty set is fine, but it must be a set!

	Parameters

	
	dev – A NetDevice object.

	explicit_acls – A set containing names of ACLs. Default: set()

>>> dev = nd.find('test1-abc')
>>> dev.vendor
<Vendor: Juniper>
>>> autoacl(dev)
set(['juniper-router-protect', 'juniper-router.policer'])

NOTE: If the default function is returned it does nothing with the
arguments and always returns an empty set.

trigger.acl.db

Redis-based replacement of the legacy acls.db file. This is used for
interfacing with the explicit and automatic ACL-to-device mappings.

>>> from trigger.netdevices import NetDevices
>>> from trigger.acl.db import AclsDB
>>> nd = NetDevices()
>>> dev = nd.find('test1-abc')
>>> a = AclsDB()
>>> a.get_acl_set(dev)
set(['juniper-router.policer', 'juniper-router-protect', 'abc123'])
>>> a.get_acl_set(dev, 'explicit')
set(['abc123'])
>>> a.get_acl_set(dev, 'implicit')
set(['juniper-router.policer', 'juniper-router-protect'])
>>> a.get_acl_dict(dev)
{'all': set(['abc123', 'juniper-router-protect', 'juniper-router.policer']),
 'explicit': set(['abc123']),
 'implicit': set(['juniper-router-protect', 'juniper-router.policer'])}

	
trigger.acl.db.get_matching_acls(wanted, exact=True, match_acl=True, match_device=False, nd=None)

	Return a sorted list of the names of devices that have at least one
of the wanted ACLs, and the ACLs that matched on each. Without ‘exact’,
match ACL name by startswith.

To get a list of devices, matching the ACLs specified:

>>> adb.get_matching_acls(['abc123'])
[('fw1-xyz.net.aol.com', ['abc123']), ('test1-abc.net.aol.com', ['abc123'])]

To get a list of ACLS matching the devices specified using an explicit
match (default) by setting match_device=True:

>>> adb.get_matching_acls(['test1-abc'], match_device=True)
[]
>>> adb.get_matching_acls(['test1-abc.net.aol.com'], match_device=True)
[('test1-abc.net.aol.com', ['abc123', 'juniper-router-protect',
'juniper-router.policer'])]

To get a list of ACLS matching the devices specified using a partial
match. Not how it returns all devices starting with ‘test1-mtc’:

>>> adb.get_matching_acls(['test1-abc'], match_device=True, exact=False)
[('test1-abc.net.aol.com', ['abc123', 'juniper-router-protect',
'juniper-router.policer'])]

	
trigger.acl.db.get_all_acls(nd=None)

	Returns a dict keyed by acl names whose containing a set of NetDevices
objects to which each acl is applied.

@nd can be your own NetDevices object if one is not supplied already

>>> all_acls = get_all_acls()
>>> all_acls['abc123']
set([<NetDevice: test1-abc.net.aol.com>, <NetDevice: fw1-xyz.net.aol.com>])

	
trigger.acl.db.get_bulk_acls(nd=None)

	Returns a set of acls with an applied count over
settings.AUTOLOAD_BULK_THRESH.

	
trigger.acl.db.populate_bulk_acls(nd=None)

	Given a NetDevices instance, Adds bulk_acls attribute to NetDevice objects.

	
class trigger.acl.db.AclsDB

	Container for ACL operations.

add/remove operations are for explicit associations only.

	
add_acl(device, acl)

	Add explicit acl to device

>>> dev = nd.find('test1-mtc')
>>> a.add_acl(dev, 'acb123')
'added acl abc123 to test1-mtc.net.aol.com'

	
get_acl_dict(device)

	Returns a dict of acl mappings for a @device, which is expected to
be a NetDevice object.

>>> a.get_acl_dict(dev)
{'all': set(['115j', 'protectRE', 'protectRE.policer', 'test-bluej',
'testgreenj', 'testops_blockmj']),
'explicit': set(['test-bluej', 'testgreenj', 'testops_blockmj']),
'implicit': set(['115j', 'protectRE', 'protectRE.policer'])}

	
get_acl_set(device, acl_set='all')

	Return an acl set matching @acl_set for a given device. Match can be
one of [‘all’, ‘explicit’, ‘implicit’]. Defaults to ‘all’.

>>> a.get_acl_set(dev)
set(['testops_blockmj', 'testgreenj', '115j', 'protectRE',
'protectRE.policer', 'test-bluej'])
>>> a.get_acl_set(dev, 'explicit')
set(['testops_blockmj', 'test-bluej', 'testgreenj'])
>>> a.get_acl_set(dev, 'implicit')
set(['protectRE', 'protectRE.policer', '115j'])

	
remove_acl(device, acl)

	Remove explicit acl from device.

>>> a.remove_acl(dev, 'acb123')
'removed acl abc123 from test1-mtc.net.aol.com'

trigger.acl.parser

Parse and manipulate network access control lists.

This library doesn’t completely follow the border of the valid/invalid ACL
set, which is determined by multiple vendors and not completely documented
by any of them. We could asymptotically approach that with an enormous
amount of testing, although it would require a ‘flavor’ flag (vendor,
router model, software version) for full support. The realistic goal
is to catch all the errors that we see in practice, and to accept all
the ACLs that we use in practice, rather than to try to reject every
invalid ACL and accept every valid ACL.

>>> from trigger.acl import parse
>>> aclobj = parse("access-list 123 permit tcp any host 10.20.30.40 eq 80")
>>> aclobj.terms
[<Term: None>]

	
trigger.acl.parser.literals(d)

	Longest match of all the strings that are keys of ‘d’.

	
trigger.acl.parser.parse(input_data)

	Parse a complete ACL and return an ACL object. This should be the only
external interface to the parser.

>>> from trigger.acl import parse
>>> aclobj = parse("access-list 123 permit tcp any host 10.20.30.40 eq 80")
>>> aclobj.terms
[<Term: None>]

	Parameters

	input_data – An ACL policy as a string or file-like object.

	
trigger.acl.parser.S(prod)

	Wrap your grammar token in this to call your helper function with a list
of each parsed subtag, instead of the raw text. This is useful for
performing modifiers.

	Parameters

	prod – The parser product.

	
class trigger.acl.parser.ACL(name=None, terms=None, format=None, family=None, interface_specific=False)

	An abstract access-list object intended to be created by the parse()
function.

	
name_terms()

	Assign names to all unnamed terms.

	
output(format=None, *largs, **kwargs)

	Output the ACL data in the specified format.

	
output_ios(replace=False)

	Output the ACL in IOS traditional format.

	Parameters

	replace – If set the ACL is preceded by a no access-list line.

	
output_ios_brocade(replace=False, receive_acl=False)

	Output the ACL in Brocade-flavored IOS format.

The difference between this and “traditional” IOS are:

	Stripping of comments

	Appending of ip rebind-acl or ip rebind-receive-acl line

	Parameters

	
	replace – If set the ACL is preceded by a no access-list line.

	receive_acl – If set the ACL is suffixed with a ip
rebind-receive-acl' instead of ``ip rebind-acl.

	
output_ios_named(replace=False)

	Output the ACL in IOS named format.

	Parameters

	replace – If set the ACL is preceded by a no access-list line.

	
output_iosxr(replace=False)

	Output the ACL in IOS XR format.

	Parameters

	replace – If set the ACL is preceded by a no ipv4 access-list line.

	
output_junos(replace=False, family=None)

	Output the ACL in JunOS format.

	Parameters

	
	replace – If set the ACL is wrapped in a
firewall { replace: ... } section.

	family – If set, the value is used to wrap the ACL in a
family inet { ...} section.

	
strip_comments()

	Strips all comments from ACL header and all terms.

	
class trigger.acl.parser.ACLProcessor

	

	
class trigger.acl.parser.Comment(data)

	Container for inline comments.

	
output_ios()

	Output the Comment to IOS traditional format.

	
output_ios_named()

	Output the Comment to IOS named format.

	
output_iosxr()

	Output the Comment to IOS XR format.

	
output_junos()

	Output the Comment to JunOS format.

	
class trigger.acl.parser.Matches(d=None, **kwargs)

	Container class for Term.match object used for membership tests on
access checks.

	
ios_address_str(addrs)

	Convert a list of addresses to IOS-style stupid strings.

	Parameters

	addrs – List of IP address objects.

	
ios_port_str(ports)

	Convert a list of tuples back to ranges, then to strings.

	Parameters

	ports – A list of port tuples, e.g. [(0,65535), (1,2)].

	
junos_str(pair)

	Convert a 2-tuple into a hyphenated string, e.g. a range of ports. If
not a tuple, tries to treat it as IPs or failing that, casts it to a
string.

	Parameters

	pair – The 2-tuple to convert.

	
output_ios()

	Return a string of IOS ACL bodies.

	
output_junos()

	Return a list that can form the from { ... } clause of the term.

	
class trigger.acl.parser.Policer(name, data)

	Container class for policer policy definitions. This is a dummy class for
now, that just passes it through as a string.

	
class trigger.acl.parser.PolicerGroup(format=None)

	Container for Policer objects. Juniper only.

	
class trigger.acl.parser.Protocol(arg)

	A protocol object used for access membership tests in Term objects.
Acts like an integer, but stringify into a name if possible.

	
class trigger.acl.parser.RangeList(data=None)

	A type which stores ordered sets, with efficient handling of
ranges. It can also store non-incrementable terms as an sorted set
without collapsing into ranges.

This is currently used to just store match conditions (e.g. protocols,
ports), but could be fleshed out into a general-purpose class. One
thing to think about is how/whether to handle a list of tuples as distinct
from a list of ranges. Should we just store them as xrange objects?
Should the object appear as discrete elements by default, for example
in len(), with the collapsed view as a method, or should we keep it
as it is now? All the current uses of this class are in this file
and have unit tests, so when we decided what the semantics of the
generalized module ought to be, we can make it so without worry.

	
expanded()

	Return a list with all ranges converted to discrete elements.

	
class trigger.acl.parser.Remark(data)

	IOS extended ACL “remark” lines automatically become comments when
converting to other formats of ACL.

	
output_ios_named()

	Output the Remark to IOS named format.

	
class trigger.acl.parser.Term(name=None, action='accept', match=None, modifiers=None, inactive=False, isglobal=False, extra=None)

	An individual term from which an ACL is made

	
output(format, *largs, **kwargs)

	Output the term to the specified format

	Parameters

	format – The desired output format.

	
output_ios(prefix=None, acl_name=None)

	Output term to IOS traditional format.

	Parameters

	
	prefix – Prefix to use, default: ‘access-list’

	acl_name – Name of access-list to display

	
output_ios_named(prefix='', *args, **kwargs)

	Output term to IOS named format.

	
output_iosxr(prefix='', *args, **kwargs)

	Output term to IOS XR format.

	
output_junos(*args, **kwargs)

	Convert the term to JunOS format.

	
set_action_or_modifier(action)

	Add or replace a modifier, or set the primary action. This method exists
for the convenience of parsers.

	
class trigger.acl.parser.TermList

	Container class for Term objects within an ACL object.

	
class trigger.acl.parser.TIP(data, **kwargs)

	Class based on IPy.IP, but with extensions for Trigger.

Currently, only the only extension is the ability to negate a network
block. Only used internally within the parser, as it’s not complete
(doesn’t interact well with IPy.IP objects). Does not handle IPv6 yet.

trigger.acl.queue

Database interface for automated ACL queue. Used primarily by load_acl and
acl` commands for manipulating the work queue.

>>> from trigger.acl.queue import Queue
>>> q = Queue()
>>> q.list()
(('dc1-abc.net.aol.com', 'datacenter-protect'), ('dc2-abc.net.aol.com',
'datacenter-protect'))

	
class trigger.acl.queue.Queue(verbose=True)

	Interacts with firewalls database to insert/remove items into the queue.

	Parameters

	verbose (Boolean) – Toggle verbosity

	
complete(device, acls)

	Mark a device and its ACLs as complete using current timestamp.

(Integrated queue only.)

	Parameters

	
	device – Device names

	acls – List of ACL names

	
create_task(queue, *args, **kwargs)

	Create a task in the specified queue.

	Parameters

	queue – Name of the queue whose object you want

	
delete(acl, routers=None, escalation=False)

	Delete an ACL from the firewall database queue.

Attempts to delete from integrated queue. If ACL test fails
or if routers are not specified, the item is deleted from manual queue.

	Parameters

	
	acl – ACL name

	routers – List of device names. If this is ommitted, the manual queue is used.

	escalation – Whether this is an escalated task

	
get_model(queue)

	Given a queue name, return its DB model.

	Parameters

	queue – Name of the queue whose object you want

	
insert(acl, routers, escalation=False)

	Insert an ACL and associated devices into the ACL load queue.

Attempts to insert into integrated queue. If ACL test fails, then
item is inserted into manual queue.

	Parameters

	
	acl – ACL name

	routers – List of device names

	escalation – Whether this is an escalated task

	
list(queue='integrated', escalation=False, q_names=('integrated', 'manual'))

	List items in the specified queue, defauls to integrated queue.

	Parameters

	
	queue – Name of the queue to list

	escalation – Whether this is an escalated task

	q_names – (Optional) List of valid queue names

	
remove(acl, routers, escalation=False)

	Integrated queue only.

Mark an ACL and associated devices as “removed” (loaded=0). Intended
for use when performing manual actions on the load queue when
troubleshooting or addressing errors with automated loads. This leaves
the items in the database but removes them from the active queue.

	Parameters

	
	acl – ACL name

	routers – List of device names

	escalation – Whether this is an escalated task

	
vprint(msg)

	Print something if verbose instance variable is set.

	Parameters

	msg – The string to print

trigger.acl.tools

Various tools for use in scripts or other modules. Heavy lifting from tools
that have matured over time have been moved into this module.

	
trigger.acl.tools.create_trigger_term(source_ips=[], dest_ips=[], source_ports=[], dest_ports=[], protocols=[], action=['accept'], name='generated_term')

	Constructs & returns a Term object from constituent parts.

	
trigger.acl.tools.create_access(terms_to_check, new_term)

	Breaks a new_term up into separate constituent parts so that they can be
compared in a check_access test.

Returns a list of terms that should be inserted.

	
trigger.acl.tools.check_access(terms_to_check, new_term, quiet=True, format='junos', acl_name=None)

	Determine whether access is permitted by a given ACL (list of terms).

Tests a new term against a list of terms. Return True if access in new term
is permitted, or False if not.

Optionally displays the terms that apply and what edits are needed.

	Parameters

	
	terms_to_check – A list of Term objects to check

	new_term – The Term object used for the access test

	quiet – Toggle whether output is displayed

	format – The ACL format to use for output display

	acl_name – The ACL name to use for output display

	
class trigger.acl.tools.ACLScript(acl=None, mode='insert', cmd='acl_script', show_mods=True, no_worklog=False, no_changes=False)

	Interface to generating or modifying access-lists. Intended for use in
creating command-line utilities using the ACL API.

	
trigger.acl.tools.process_bulk_loads(work, max_hits=1, force_bulk=False)

	Formerly “process –ones”.

Processes work dict and determines tuple of (prefix, site) for each device. Stores
tuple as a dict key in prefix_hits. If prefix_hits[(prefix, site)] is greater than max_hits,
remove all further matching devices from work dict.

By default if a device has no acls flagged as bulk_acls, it is not removed from the work dict.

	Example:

	
	Device ‘foo1-xyz.example.com’ returns (‘foo’, ‘xyz’) as tuple.

	This is stored as prefix_hits[(‘foo’, ‘xyz’)] = 1

	All further devices matching that tuple increment the hits for that tuple

	Any devices matching hit counter exceeds max_hits is removed from work dict

You may override max_hits to increase the num. of devices on which to load a bulk acl.
You may pass force_bulk=True to treat all loads as bulk loads.

	
trigger.acl.tools.get_bulk_acls()

	Returns a dict of acls with an applied count over settings.AUTOLOAD_BULK_THRESH

	
trigger.acl.tools.get_comment_matches(aclobj, requests)

	Given an ACL object and a list of ticket numbers return a list of matching comments.

	
trigger.acl.tools.write_tmpacl(acl, process_name='_tmpacl')

	Write a temporary file to disk from an Trigger acl.ACL object & return the filename

	
trigger.acl.tools.diff_files(old, new)

	Return a unified diff between two files

	
trigger.acl.tools.worklog(title, diff, log_string='updated by express-gen')

	Save a diff to the ACL worklog

	
trigger.acl.tools.insert_term_into_acl(new_term, aclobj, debug=False)

	Return a new ACL object with the new_term added in the proper place based
on the aclobj. Intended to recursively append to an interim ACL object
based on a list of Term objects.

It’s safe to assume that this function is incomplete pending better
documentation and examples.

	Parameters

	
	new_term – The Term object to use for comparison against aclobj

	aclobj – The original ACL object to use for creation of new_acl

Example:

import copy
terms_to_be_added is a list of Term objects that is to be added in
the "right place" into new_acl based on the contents of aclobj
original_acl = parse(open('acl.original'))
new_acl = copy.deepcopy(original_acl) # Dupe the original
for term in terms_to_be_added:
 new_acl = generate_new_acl(term, new_acl)

	
trigger.acl.tools.create_new_acl(old_file, terms_to_be_added)

	Given a list of Term objects call insert_term_into_acl() to determine
what needs to be added in based on the contents of old_file. Returns a new
ACL object.

trigger.changemgmt — Change management library

Abstract interface to bounce windows and moratoria.

	
class trigger.changemgmt.BounceStatus(status_name)

	An object that represents a bounce window risk-level status.

	green: Low risk

	yellow: Medium risk

	red: High risk

Objects stringify to ‘red’, ‘green’, or ‘yellow’, and can be compared
against those strings. Objects can also be compared against each other.
‘red’ > ‘yellow’ > ‘green’.

>>> green = BounceStatus('green')
>>> yellow = BounceStatus('yellow')
>>> print green
green
>>> yellow > green
True

	Parameters

	status_name – The colored risk-level status name.

	
class trigger.changemgmt.BounceWindow(status_by_hour=None, green=None, yellow=None, red=None, default='red')

	Build a bounce window of 24 BounceStatus objects.

You may either specify your own list of 24
BounceStatus objects using status_by_hour, or you
may omit this argument and specify your ‘green’, ‘yellow’, and ‘red’
risk levels by using hyphenated and comma-separated text strings.

You may use digits (“14”) or hyphenated ranges (“0-5”) and may join these
together using a comma (“,”) with or without spacing separating them. For
example “0-5, 14” will be parsed into [0, 1, 2, 3, 4, 5, 14].

The default color is used to fill in the gaps between the other colors,
so that the total is always 24 in the resultant list status objects.

>>> b = BounceWindow(green='0-3, 23', red='10', default='yellow')
>>> b.status()
<BounceStatus: yellow>
>>> b.next_ok('green')
datetime.datetime(2012, 12, 5, 4, 0, tzinfo=<UTC>)
>>> b.dump()
{0: <BounceStatus: green>,
 1: <BounceStatus: green>,
 2: <BounceStatus: green>,
 3: <BounceStatus: green>,
 4: <BounceStatus: yellow>,
 5: <BounceStatus: yellow>,
 6: <BounceStatus: yellow>,
 7: <BounceStatus: yellow>,
 8: <BounceStatus: yellow>,
 9: <BounceStatus: yellow>,
 10: <BounceStatus: red>,
 11: <BounceStatus: yellow>,
 12: <BounceStatus: yellow>,
 13: <BounceStatus: yellow>,
 14: <BounceStatus: yellow>,
 15: <BounceStatus: yellow>,
 16: <BounceStatus: yellow>,
 17: <BounceStatus: yellow>,
 18: <BounceStatus: yellow>,
 19: <BounceStatus: yellow>,
 20: <BounceStatus: yellow>,
 21: <BounceStatus: yellow>,
 22: <BounceStatus: yellow>,
 23: <BounceStatus: green>}

You may modify the global default fallback color by setting
BOUNCE_DEFAULT_COLOR in your settings.py.

Although the query API is generic and could accomodate any sort of bounce
window policy, this constructor knows only about AOL’s bounce windows,
which operate on “US/Eastern” time (worldwide), always change on hour
boundaries, and are the same every day. If that ever changes, only this
class will need to be updated.

End-users are not expected to create new BounceWindow objects;
instead, use bounce() or
bounce to get an object,
then query its methods.

	Parameters

	
	status_by_hour – (Optional) A list of 24 BounceStatus objects.

	green – Representative string of hours.

	yellow – Representative string of hours.

	red – Representative string of hours.

	default – The color used to fill in the gaps between other risk levels.

	
dump()

	Dump a mapping of hour to status

	
next_ok(status, when=None)

	Return the next time at or after the specified time (default now) that
it the bounce status will be at equal to or less than the given status.

For example, next_ok('yellow') will return the time that the bounce
window becomes ‘yellow’ or ‘green’. Returns UTC time.

	Parameters

	
	status – The colored risk-level status name.

	when – A datetime object.

	
status(when=None)

	Return a BounceStatus object for the specified
time or now.

	Parameters

	when – A datetime object.

	
trigger.changemgmt.bounce(device, default=BounceWindow(green='5-7', yellow='0-4, 8-15', red='16-23', default='red'))

	Return the bounce window for a given device.

	Parameters

	
	device – A NetDevice object.

	default – A BounceWindow object.

trigger.cmds — Command execution library

This module abstracts the asynchronous execution of commands on multiple
network devices. It allows for integrated parsing and event-handling of return
data for rapid integration to existing or newly-created tools.

The Commando class is designed to be extended but can still be
used as-is to execute commands and return the results as-is.

	
class trigger.cmds.Commando(devices=None, commands=None, creds=None, incremental=None, max_conns=10, verbose=False, timeout=30, production_only=True, allow_fallback=True, with_errors=True, force_cli=False, with_acls=False, command_interval=0, stop_reactor=True)

	Execute commands asynchronously on multiple network devices.

This class is designed to be extended but can still be used as-is to execute
commands and return the results as-is.

At the bare minimum you must specify a list of devices to interact with.
You may optionally specify a list of commands to execute on those
devices, but doing so will execute the same commands on every device
regardless of platform.

If commands are not specified, they will be expected to be emitted by
the generate method for a given platform. Otherwise no commands will be
executed.

If you wish to customize the commands executed by device, you must define a
to_{vendor_name} method containing your custom logic.

If you wish to customize what is done with command results returned from a
device, you must define a from_{vendor_name} method containing your
custom logic.

	Parameters

	
	devices – A list of device hostnames or NetDevice objects

	commands – (Optional) A list of commands to execute on the devices.

	creds – (Optional) A 3-tuple of (username, password, realm). If only (username,
password) are provided, realm will be populated from
DEFAULT_REALM. If unset it will fetch from .tacacsrc.

	incremental – (Optional) A callback that will be called with an empty sequence upon
connection and then called every time a result comes back from the
device, with the list of all results.

	max_conns – (Optional) The maximum number of simultaneous connections to keep open.

	verbose – (Optional) Whether or not to display informational messages to the
console.

	timeout – (Optional) Time in seconds to wait for each command executed to return a
result. Set to None to disable timeout (not recommended).

	production_only – (Optional) If set, includes all devices instead of excluding any devices
where adminStatus is not set to PRODUCTION.

	allow_fallback – If set (default), allow fallback to base parse/generate methods when
they are not customized in a subclass, otherwise an exception is raised
when a method is called that has not been explicitly defined.

	with_errors – (Optional) Return exceptions as results instead of raising them. The
default is to always return them.

	force_cli – (Optional) Juniper only. If set, sends commands using CLI instead of
Junoscript.

	with_acls – Whether to load ACL associations (requires Redis). Defaults to whatever
is specified in settings.WITH_ACLS

	command_interval – (Optional) Amount of time in seconds to wait between sending commands.

	stop_reactor – Whether to stop the reactor loop when all results have returned.
(Default: True)

	
append_parsed_results(device, results)

	A simple method for appending results called by template parser
method.

If you want to customize the default method for storing parsed
results, overload this in your subclass.

	Parameters

	
	device – A NetDevice object

	results – The results to store. Anything you want really.

	
errback(failure, device)

	The default errback. Overload for custom behavior but make sure it
always decrements the connections.

	Parameters

	
	failure – Usually a Twisted Failure instance.

	device – A NetDevice object

	
generate(device, commands=None, extra=None)

	Generate commands to be run on a device. If you don’t provide
commands to the class constructor, this will return an empty list.

Define a ‘to_{vendor_name}’ method to customize the behavior for each
platform.

	Parameters

	
	device (NetDevice) – NetDevice object

	commands (list) – (Optional) A list of commands to execute on the device. If not
specified in they will be inherited from commands passed to the
class constructor.

	extra – (Optional) A dictionary of extra data to send to the generate
method for the device.

	
map_parsed_results(command=None, fsm=None)

	Return a dict of {command: fsm, ...}

	
map_results(commands=None, results=None)

	Return a dict of {command: result, ...}

	
parse(results, device, commands=None)

	Parse output from a device. Calls to self._lookup_method to find
specific from method.

Define a ‘from_{vendor_name}’ method to customize the behavior for each
platform.

	Parameters

	
	results (list) – The results of the commands executed on the device

	device (NetDevice) – Device object

	commands (list) – (Optional) A list of commands to execute on the device. If not
specified in they will be inherited from commands passed to the
class constructor.

	
parse_template(results, device, commands=None)

	Generator function that processes unstructured CLI data and yields either
a TextFSM based object or generic raw output.

	Parameters

	
	results (str) – The unstructured “raw” CLI data from device.

	device (NetDevice) – NetDevice object

	
reactor_running

	Return whether reactor event loop is running or not

	
run()

	Nothing happens until you execute this to perform the actual work.

	
select_next_device(jobs=None)

	Select another device for the active queue.

Currently only returns the next device in the job queue. This is
abstracted out so that this behavior may be customized, such as for
future support for incremental callbacks.

If a device is determined to be invalid, you must return None.

	Parameters

	jobs – (Optional) The jobs queue. If not set, uses self.jobs.

	Returns

	A NetDevice object or None.

	
store_error(device, error)

	A simple method for storing an error called by all default
parse/generate methods.

If you want to customize the default method for storing results,
overload this in your subclass.

	Parameters

	
	device – A NetDevice object

	error – The error to store. Anything you want really, but usually a Twisted
Failure instance.

	
store_results(device, results)

	A simple method for storing results called by all default
parse/generate methods.

If you want to customize the default method for storing results,
overload this in your subclass.

	Parameters

	
	device – A NetDevice object

	results – The results to store. Anything you want really.

	
to_juniper(device, commands=None, extra=None)

	This just creates a series of <command>foo</command> elements to
pass along to execute_junoscript()

	
class trigger.cmds.ReactorlessCommando(devices=None, commands=None, creds=None, incremental=None, max_conns=10, verbose=False, timeout=30, production_only=True, allow_fallback=True, with_errors=True, force_cli=False, with_acls=False, command_interval=0, stop_reactor=True)

	A reactor-less Commando subclass.

This allows multiple instances to coexist, with the side-effect that you
have to manage the reactor start/stop manually.

An example of how this could be used:

from twisted.internet import defer, reactor

devices = ['dev1', 'dev2']

Our Commando instances. This is an example to show we have two instances
co-existing under the same reactor.
c1 = ShowClock(devices)
c2 = ShowUsers(devices)
instances = [c1, c2]

Call the run method for each instance to get a list of Deferred task objects.
deferreds = []
for i in instances:
 deferreds.append(i.run())

Here we use a DeferredList to track a list of Deferred tasks that only
returns once they've all completed.
d = defer.DeferredList(deferreds)

Once every task has returned a result, stop the reactor
d.addBoth(lambda _: reactor.stop())

And... finally, start the reactor to kick things off.
reactor.run()

Inspect your results
print d.result

	
monitor_result(result, reactor)

	Loop periodically or until the factory stops to check if we’re
all_done and then return the results.

	
run()

	We’ve overloaded the run method to return a Deferred task object.

	
class trigger.cmds.NetACLInfo(**args)

	Class to fetch and parse interface information. Exposes a config
attribute which is a dictionary of devices passed to the constructor and
their interface information.

Each device is a dictionary of interfaces. Each interface field will
default to an empty list if not populated after parsing. Below is a
skeleton of the basic config, with expected fields:

config {
 'device1': {
 'interface1': {
 'acl_in': [],
 'acl_out': [],
 'addr': [],
 'description': [],
 'subnets': [],
 }
 }
}

Interface field descriptions:

	addr

	List of IPy.IP objects of interface addresses

	acl_in

	List of inbound ACL names

	acl_out

	List of outbound ACL names

	description

	List of interface description(s)

	subnets

	List of IPy.IP objects of interface networks/CIDRs

Example:

>>> n = NetACLInfo(devices=['jm10-cc101-lab.lab.aol.net'])
>>> n.run()
Fetching jm10-cc101-lab.lab.aol.net
>>> n.config.keys()
[<NetDevice: jm10-cc101-lab.lab.aol.net>]
>>> dev = n.config.keys()[0]
>>> n.config[dev].keys()
['lo0.0', 'ge-0/0/0.0', 'ge-0/2/0.0', 'ge-0/1/0.0', 'fxp0.0']
>>> n.config[dev]['lo0.0'].keys()
['acl_in', 'subnets', 'addr', 'acl_out', 'description']
>>> lo0 = n.config[dev]['lo0.0']
>>> lo0['acl_in']; lo0['addr']
['abc123']
[IP('66.185.128.160')]

This accepts all arguments from the Commando parent class,
as well as this one extra:

	Parameters

	skip_disabled – Whether to include interface names without any information. (Default:
True)

	
IPhost(addr)

	Given ‘172.20.1.4/24’, return IP(‘172.20.1.4/32’).

	
IPsubnet(addr)

	Given ‘172.20.1.4/24’, return IP(‘172.20.1.0/24’).

	
from_arista(data, device, commands=None)

	Parse IOS config based on EBNF grammar

	
from_brocade(data, device, commands=None)

	Parse IOS config based on EBNF grammar

	
from_cisco(data, device, commands=None)

	Parse IOS config based on EBNF grammar

	
from_force10(data, device, commands=None)

	Parse IOS config based on EBNF grammar

	
from_foundry(data, device, commands=None)

	Parse IOS config based on EBNF grammar

	
from_juniper(data, device, commands=None)

	Do all the magic to parse Junos interfaces

	
to_arista(dev, commands=None, extra=None)

	Similar to IOS, but:

	Arista has no “show conf” so we have to do “show run”

	The regex used in the CLI for Arista is more “precise” so we have
to change the pattern a little bit compared to the on in
generate_ios_cmd

	
to_brocade(dev, commands=None, extra=None)

	This is the “show me all interface information” command we pass to
IOS devices

	
to_cisco(dev, commands=None, extra=None)

	This is the “show me all interface information” command we pass to
IOS devices

	
to_force10(dev, commands=None, extra=None)

	
	Similar to IOS, but:

	
	You only get the “grep” (“include” equivalent) when using “show
run”.

	The regex must be quoted.

	
to_foundry(dev, commands=None, extra=None)

	This is the “show me all interface information” command we pass to
IOS devices

	
to_juniper(dev, commands=None, extra=None)

	Generates an etree.Element object suitable for use with
JunoScript

trigger.conf — Configuration & Settings module

Settings and configuration for Trigger.

Values will be read from the module specified by the TRIGGER_SETTINGS
environment variable, and then from trigger.conf.global_settings; see the
global settings file for a list of all possible variables.

If TRIGGER_SETTINGS is not set, it will attempt to load from
/etc/trigger/settings.py and complains if it can’t. The primary public
interface for this module is the settings variable, which is a module
object containing the variables found in settings.py.

>>> from trigger.conf import settings
>>> settings.FIREWALL_DIR
'/data/firewalls'
>>> settings.REDIS_HOST
'127.0.0.1'

	
class trigger.conf.DummySettings

	Emulates settings and returns empty strings on attribute gets.

	
class trigger.conf.BaseSettings

	Common logic for settings whether set by a module or by the user.

	
class trigger.conf.Settings(settings_module)

	

trigger.contrib — Extra, optional tools that solve common problems, extend, or modify core functionality.

trigger.contrib.commando

Simple command running for Trigger meant to be used with a
long-running reactor loop (such using the Twisted XMLRPC server).

This differs from Commando in that:

	It does not start/stop the reactor, instead it uses sentinel values and a
task monitor to detect when it’s done.

	The .run() method returns a twisted.internet.defer.Deferred object.

	Results/errors are stored in a list instead of a dict.

	Each result object is meant to be easily serialized (e.g. to JSON).

	
class trigger.contrib.commando.CommandoApplication(*args, **kwargs)

	Commando subclass to be used in an application where the reactor is always
running (e.g. twistd or an application server).

Stores results as a list of dictionaries ideal for serializing to JSON.

	
device_object(device_name, **kwargs)

	Create a basic device dictionary with optional data.

	
from_base(results, device, commands=None)

	Call store_results directly

	
from_juniper(results, device, commands=None)

	(Maybe) convert Juniper XML results into a strings

	
map_results(commands=None, results=None)

	Return a list of command objects.

[{‘command’: ‘foo’, ‘result’: ‘bar’}, …]

	
monitor_result(result, reactor)

	Loop periodically or until the factory stops to monitor the results
and return them.

	
run()

	Nothing happens until you execute this to perform the actual work.

	
store_error(device, error)

	Called when an errback is fired.

Should do somethign meaningful with the errors, but for now just stores
it as it would a result.

	
store_results(device, results)

	Called by the parse (from) methods to store command output.

	Device

	A NetDevice object

	Parameters

	results – The results to store. Anything you want really.

trigger.contrib.commando.plugins

This package provides facilities for running commands on devices using the CLI.
Plugins for the Commando API built around Trigger.

trigger.contrib.docommand

This package provides facilities for running commands on devices using the CLI.

	
class trigger.contrib.docommand.DoCommandBase(devices=None, commands=None, creds=None, incremental=None, max_conns=10, verbose=False, timeout=30, production_only=True, allow_fallback=True, with_errors=True, force_cli=False, with_acls=False, command_interval=0, stop_reactor=True)

	Base class for docommand action classes.

	
errback(failure, device)

	The default errback. Overload for custom behavior but make sure it
always decrements the connections.

	Parameters

	
	failure – Usually a Twisted Failure instance.

	device – A NetDevice object

	
from_base(results, device, commands=None)

	Call store_results without calling map_results

	
class trigger.contrib.docommand.CommandRunner(files=None, commands=None, debug=False, timeout=30, **kwargs)

	Run commands on network devices.

Usage:

n = CommandRunner(devices=['dev1', dev2'], files=['file1', 'file2'])
n.run()

This will execute all commands inside of each file (‘file1’,’file2’)
onto all listed devices (‘dev1, ‘dev2’).

	Parameters

	
	devices – List of device names. Each hostname must have a match in NetDevices.

	files – List of files named after the FQDN of each device.

	
store_results(device, results)

	Define how we’re storing results.

	
class trigger.contrib.docommand.ConfigLoader(files=None, commands=None, debug=False, **kwargs)

	Load configuration changes on network devices.

Usage:

n = ConfigLoader(devices=['dev1', dev2'], files=['file1', 'file2'])
n.run()

This will load all listed config files (‘file1’,’file2’)
onto all listed devices (‘dev1, ‘dev2’).

	Parameters

	files – List of files named after the FQDN of each device.

	Files must exist in a local TFTP directory for non-Juniper devices.

	Files must be accessible by device via TFTP for non-Juniper devices.

	
from_juniper(data, device, commands=None)

	Parse results from a Juniper device.

	
store_results(device, results)

	Store the results from a commands.

If you’d rather just change the default method for storing results,
overload this. All default parse/generate methods call this.

	
to_juniper(device=None, commands=None, extra=None)

	Configure a Juniper device using JunoScript.

	Returns

	list

	
trigger.contrib.docommand.xml_print(xml, iterations=10)

	Display XML in a tree format.

	Parameters

	
	xml – XML object to parse

	iterations – Number of iterations to perform

	
trigger.contrib.docommand.do_work(work=None, action_class=None)

	list results = do_work(list work)

	
trigger.contrib.docommand.get_commands_from_opts(opts)

	list commands = get_commands_from_opts(dict opts)

User specified on cmdline either a path to a file containing a list of
commands/config or an actual list. Return the list!

	
trigger.contrib.docommand.get_devices_from_opts(opts)

	list devicenames = get_devices_from_opts(dict opts)

User specified on cmdline either a path to a file containing a list of
devices or an actual list. Return the list!

	
trigger.contrib.docommand.get_devices_from_path(path)

	list devicenames = get_devices_from_path(str path)

If path specified for devices/configs, then the list of filenames
in dir will correspond to the list of devices.

The contents of each file contain the config/commands to be loaded/run
on the specific device.

Future enhancements

	verify that the filenames are fqdns

	verify that the devnames exist in netdevices.xml

	
trigger.contrib.docommand.get_jobs(opts)

	list jobs = get_jobs(dict opts)

Based on which arguments are provided, figure out what is loaded/run on
which devices and create a list of objects matching the 2:

job = {'d': [],'c': [],'f': []}

Is read as “load ALL configs listed in ‘c’ on ALL devs listed in ‘d’”. Each
such grouping is a separate job.

Future enhancements:

	If multiple jobs exist for the same device we should regroup and optimize
biggest optimization, though, will come after minor Commando enhancements
would allow feeding entire list into a single run()

	
trigger.contrib.docommand.get_list_from_file(path)

	list text = get_list_from_file(str path)

Specified file (path) will contain a list of newline-separated items. This
function is used for loading both configs/cmds as well as devices.

	
trigger.contrib.docommand.main(action_class=None)

	void = main(CommandoClass action_class)

	
trigger.contrib.docommand.print_results(results=None)

	binary success = print_results(list results)

	
trigger.contrib.docommand.print_work(work=None)

	void = do_work(list work)

Cycle through the list of jobs and then display the work to be done.

	
trigger.contrib.docommand.stage_tftp(acls, nonce)

	Need to edit this for cmds, not just acls, but
the basic idea is borrowed from bin/load_acl.

	
trigger.contrib.docommand.verify_opts(opts)

	Validate opts and return whether they are ok.

returns True if all is good, otherwise (False, errormsg)

trigger.contrib.xmlrpc

XMLRPC Server for Trigger with SSH manhole service.

Trigger Twisted XMLRPC server with an SSH manhole. Supports SSL.

This provides a daemonized Twisted reactor loop, Trigger and client
applications do not have to co-habitate. Using the XMLRPC server model, all
Trigger compatibility tasks can be executed using simple XMLRPC clients that
call the appropriate method with arguments on the local XMLRPC server instance.

New methods can be added by way of plugins.

See examples/xmlrpc_server in the Trigger source distribution for a simple
usage example.

	
class trigger.contrib.xmlrpc.server.TriggerXMLRPCServer(*args, **kwargs)

	Twisted XMLRPC server front-end for Commando

	
addHandler(handler)

	Add a handler and bind it to an XMLRPC procedure.

Handler must a be a function or an instance of an object with handler
methods.

	
addHandlers(handlers)

	Add multiple handlers

	
listProcedures()

	Return a list of the registered procedures

	
lookupProcedure(procedurePath)

	Lookup a method dynamically.

	First, see if it’s provided by a sub-handler.

	Or try a self-defined method (prefixed with xmlrpc_)

	Lastly, try dynamically mapped methods.

	Or fail loudly.

	
xmlrpc_add(x, y)

	Adds x and y

	
xmlrpc_add_handler(mod_name, task_name, force=False)

	Add a handler object from a remote call.

	
xmlrpc_execute_commands(args, kwargs)

	Execute commands on devices

	
xmlrpc_fault()

	Raise a Fault indicating that the procedure should not be used.

	
trigger.contrib.xmlrpc.server.main()

	To daemonize as a twistd plugin! Except this doesn’t work and these

trigger.exceptions — Trigger’s Exceptions

All custom exceptions used by Trigger. Where possible built-in exceptions are
used, but sometimes we need more descriptive errors.

	
exception trigger.exceptions.ACLError

	Base exception for all ACL-related errors.

	
exception trigger.exceptions.ACLNameError

	A base exception for all ACL naming errors.

	
exception trigger.exceptions.ACLQueueError

	Raised when we encounter errors communicating with the Queue.

	
exception trigger.exceptions.ACLSetError

	A base exception for all ACL Set errors.

	
exception trigger.exceptions.ACLStagingFailed

	Raised when we encounter errors staging a file for loading.

	
exception trigger.exceptions.ActionError

	A base exception for all Term action errors.

	
exception trigger.exceptions.BadACLName

	Raised when an ACL object is assigned an invalid name.

	
exception trigger.exceptions.BadCounterName

	Raised when a counter name is invalid.

	
exception trigger.exceptions.BadForwardingClassName

	Raised when a forwarding-class name is invalid.

	
exception trigger.exceptions.BadIPSecSAName

	Raised when an IPSec SA name is invalid.

	
exception trigger.exceptions.BadMatchArgRange

	Raised when a match condition argument does not fall within a specified
range.

	
exception trigger.exceptions.BadPolicerName

	Raised when a policer name is invalid.

	
exception trigger.exceptions.BadRejectCode

	Raised when an invalid rejection code is specified.

	
exception trigger.exceptions.BadRoutingInstanceName

	Raised when a routing-instance name specified in an action is invalid.

	
exception trigger.exceptions.BadTermName

	Raised when an invalid name is assigned to a Term
object

	
exception trigger.exceptions.BadVendorName

	Raised when a Vendor object has a problem with the name.

	
exception trigger.exceptions.CommandFailure

	Raised when a command fails to execute, such as when it results in an
error.

	
exception trigger.exceptions.CommandTimeout

	Raised when a command times out while executing.

	
exception trigger.exceptions.CommandoError

	A base exception for all Commando-related errors.

	
exception trigger.exceptions.ConnectionFailure

	Raised when a connection attempt totally fails.

	
exception trigger.exceptions.CouldNotParse

	Raised when a .tacacsrc file failed to parse.

	
exception trigger.exceptions.EnablePasswordFailure

	Raised when enable password was required but not found.

	
exception trigger.exceptions.ImproperlyConfigured

	Raised when something is improperly… configured…

	
exception trigger.exceptions.InvalidACLSet

	Raised when an invalid ACL set is specified.

	
exception trigger.exceptions.InvalidBounceWindow

	Raised when a BounceWindow object is kind of not good.

	
exception trigger.exceptions.IoslikeCommandFailure

	Raised when a command fails on an IOS-like device.

	
exception trigger.exceptions.JunoscriptCommandFailure(tag)

	Raised when a Junoscript command fails on a Juniper device.

	
exception trigger.exceptions.LoaderFailed

	Raised when a metadata loader failed to load from data source.

	
exception trigger.exceptions.LoginFailure

	Raised when authentication to a remote system fails.

	
exception trigger.exceptions.LoginTimeout

	Raised when login to a remote systems times out.

	
exception trigger.exceptions.MatchError

	A base exception for all errors related to Term
Matches objects.

	
exception trigger.exceptions.MissingACLName

	Raised when an ACL object is missing a name.

	
exception trigger.exceptions.MissingPassword

	Raised when a credential is missing a password.

	
exception trigger.exceptions.MissingPlatform

	Raised when a specific device platform is not supported.

	
exception trigger.exceptions.MissingRealmName

	Raised when a credential is missing a realm.

	
exception trigger.exceptions.MissingTermName

	Raised when a an un-named Term is output to a format that requires Terms to
be named (e.g. Juniper).

	
exception trigger.exceptions.NetDeviceError

	A base exception for all NetDevices related errors.

	
exception trigger.exceptions.NetScreenError

	A general exception for NetScreen devices.

	
exception trigger.exceptions.NetScreenParseError

	Raised when a NetScreen policy cannot be parsed.

	
exception trigger.exceptions.NetscalerCommandFailure

	Raised when a command fails on a NetScaler device.

	
exception trigger.exceptions.NotificationFailure

	Raised when a notification fails and has not been silenced.

	
exception trigger.exceptions.ParseError(reason, line=None, column=None)

	Raised when there is an error parsing/normalizing an ACL that tries to tell
you where it failed.

	
exception trigger.exceptions.SSHConnectionLost(code, desc)

	Raised when an SSH connection is lost for any reason.

	
exception trigger.exceptions.TacacsrcError

	Base exception for TACACSrc errors.

	
exception trigger.exceptions.TriggerError

	A base exception for all Trigger-related errors.

	
exception trigger.exceptions.TwisterError

	A base exception for all errors related to Twister.

	
exception trigger.exceptions.UnknownActionName

	Raised when an action assigned to a ~trigger.acl.parser.Term` object is
unknown.

	
exception trigger.exceptions.UnknownMatchArg

	Raised when an unknown match argument is specified.

	
exception trigger.exceptions.UnknownMatchType

	Raised when an unknown match condition is specified.

	
exception trigger.exceptions.UnsupportedDeviceType

	Raised when a device type is not supported by Trigger.

	
exception trigger.exceptions.UnsupportedVendor

	Raised when a vendor is not supported by Trigger.

	
exception trigger.exceptions.VendorSupportLacking

	Raised when a feature is not supported by a given vendor.

	
exception trigger.exceptions.VersionMismatch

	Raised when the TACACSrc version does not match.

trigger.gorc — Determine commands to run upon login

This is used by ../usage/scripts/go to execute commands upon login to a
device. A user may specify a list of commands to execute for each vendor. If
the file is not found, or the syntax is bad, no commands will be passed to the
device.

By default, only a very limited subset of root commands are allowed to be
specified within the .gorc. Any root commands not explicitly permitted will
be filtered out prior to passing them along to the device.

The only public interface to this module is get_init_commands.
Given a .gorc That looks like this:

[init_commands]
cisco:
 term mon
 terminal length 0
 show clock

This is what is returned:

>>> from trigger import gorc
>>> gorc.get_init_commands('cisco')
['term mon', 'terminal length 0', 'show clock']

You may also pass a list of commands as the init_commands argument to the
connect function (or a NetDevice
object’s method of the same name) to override anything specified in a user’s
.gorc:

>>> from trigger.netdevices import NetDevices
>>> nd = NetDevices()
>>> dev = nd.find('foo1-abc')
>>> dev.connect(init_commands=['show clock', 'exit'])
Connecting to foo1-abc.net.aol.com. Use ^X to exit.

Fetching credentials from /home/jathan/.tacacsrc
foo1-abc#show clock
22:48:24.445 UTC Sat Jun 23 2012
foo1-abc#exit
>>>

	
trigger.gorc.filter_commands(cmds, allowed_commands=None)

	Filters root commands from cmds that are not explicitly allowed.

Allowed commands are defined using GORC_ALLOWED_COMMANDS.

	Parameters

	
	cmds – A list of commands that should be filtered

	allowed_commands – A list of commands that are allowed

	Returns

	Filtered list of commands

	
trigger.gorc.get_init_commands(vendor)

	Return a list of init commands for a given vendor name. In all failure
cases it will return an empty list.

	Parameters

	vendor – A vendor name (e.g. ‘juniper’)

	Returns

	list of commands

	
trigger.gorc.parse_commands(vendor, section='init_commands', config=None)

	Fetch the init commands.

	Parameters

	
	vendors – A vendor name (e.g. ‘juniper’)

	section – The section of the config

	config – A parsed ConfigParser object

	Returns

	List of commands

	
trigger.gorc.read_config(filepath='/home/docs/.gorc')

	Read the .gorc file

	Parameters

	filepath – The path to the .gorc file

	Returns

	A parsed ConfigParser object

trigger.netdevices — Network device metadata library

The heart and soul of Trigger, NetDevices is an abstract interface to network
device metadata and ACL associations.

Parses NETDEVICES_SOURCE and makes available a dictionary of
NetDevice objects, which is keyed by the FQDN of every
network device.

Other interfaces are non-public.

Example:

>>> from trigger.netdevices import NetDevices
>>> nd = NetDevices()
>>> dev = nd['test1-abc.net.aol.com']
>>> dev.vendor, dev.make
(<Vendor: Juniper>, 'MX960-BASE-AC')
>>> dev.bounce.next_ok('green')
datetime.datetime(2010, 4, 9, 9, 0, tzinfo=<UTC>)

	
trigger.netdevices.device_match(name, production_only=True)

	Return a matching NetDevice object based on
partial name. Return None if no match or if multiple matches is
cancelled:

>>> device_match('test')
2 possible matches found for 'test':
 [1] test1-abc.net.aol.com
 [2] test2-abc.net.aol.com
 [0] Exit

Enter a device number: 2
<NetDevice: test2-abc.net.aol.com>

If there is only a single match, that device object is returned without
a prompt:

>>> device_match('fw')
Matched 'fw1-xyz.net.aol.com'.
<NetDevice: fw1-xyz.net.aol.com>

	
class trigger.netdevices.NetDevice(data=None, with_acls=None)

	An object that represents a distinct network device and its metadata.

Almost all of the attributes are populated by
_populate() and are mostly dependent upon the source
data. This is prone to implementation problems and should be revisited in
the long-run as there are certain fields that are baked into the core
functionality of Trigger.

Users usually won’t create these objects directly! Rely instead upon
NetDevices to do this for you.

	
allowable(action, when=None)

	Return whether it’s okay to perform the specified action.

False means a bounce window conflict. For now 'load-acl' is the
only valid action and moratorium status is not checked.

	Parameters

	
	action – The action to check.

	when – A datetime object.

	
can_ssh_async()

	Am I enabled to use SSH async?

	
can_ssh_pty()

	Am I enabled to use SSH pty?

	
close()

	Close an open NetDevice object.

	
dump()

	Prints details for a device.

	
has_ssh()

	Am I even listening on SSH?

	
is_brocade_vdx()

	Am I a Brocade VDX switch?

This is used to account for the disparity between the Brocade FCX
switches (which behave like Foundry devices) and the Brocade VDX
switches (which behave differently from classic Foundry devices).

	
is_cisco_asa()

	Am I a Cisco ASA Firewall?

This is used to account for slight differences in the commands that
may be used between Cisco’s ASA and IOS platforms. Cisco ASA is still
very IOS-like, but there are still several gotcha’s between the
platforms.

Will return True if vendor is Cisco and platform is Firewall. This
is to allow operability if using .csv NetDevices and pretty safe to
assume considering ASA (was PIX) are Cisco’s flagship(if not only)
Firewalls.

	
is_cisco_nexus()

	Am I a Cisco Nexus device?

	
is_cumulus()

	Am I running Cumulus?

	
is_firewall()

	Am I a firewall?

	
is_ioslike()

	Am I an IOS-like device (as determined by IOSLIKE_VENDORS)?

	
is_netscaler()

	Am I a NetScaler?

	
is_netscreen()

	Am I a NetScreen running ScreenOS?

	
is_pica8()

	Am I a Pica8?

	
is_reachable()

	Do I respond to a ping?

	
is_router()

	Am I a router?

	
is_switch()

	Am I a switch?

	
next_ok(action, when=None)

	Return the next time at or after the specified time (default now)
that it will be ok to perform the specified action.

	Parameters

	
	action – The action to check.

	when – A datetime object.

	
open()

	Open new session with NetDevice.

	Example:

	>>> nd = NetDevices()
>>> dev = nd.find('arista-sw1.demo.local')
>>> dev.open()

	
run_channeled_commands(commands, on_error=None)

	Public method for scheduling commands onto device.

This variant allows for efficient multiplexing of commands across multiple vty
lines where supported ie Arista and Cumulus.

	Parameters

	
	commands (list) – List containing commands to schedule onto device loop.

	on_error (func) – Error handler

	Example

	

>>> ...
>>> dev.open()
>>> dev.run_channeled_commands(['show ip int brief', 'show version'], on_error=lambda x: handle(x))

	
run_commands(commands, on_error=None)

	Public method for scheduling commands onto device.

Default implementation that schedules commands onto a Device loop.
This implementation ensures commands are executed sequentially.

	Parameters

	
	commands (list) – List containing commands to schedule onto device loop.

	on_error (func) – Error handler

	Example

	

>>> ...
>>> dev.open()
>>> dev.run_commands(['show ip int brief', 'show version'], on_error=lambda x: handle(x))

	
class trigger.netdevices.Vendor(manufacturer=None)

	Map a manufacturer name to Trigger’s canonical name.

Given a manufacturer name like ‘CISCO SYSTEMS’, this will attempt to map it
to the canonical vendor name specified in settings.VENDOR_MAP. If this
can’t be done, attempt to split the name up (‘CISCO, ‘SYSTEMS’) and see if
any of the words map. An exception is raised as a last resort.

This exposes a normalized name that can be used in the event of a
multi-word canonical name.

	
determine_vendor(manufacturer)

	Try to turn the provided vendor name into the cname.

	
normalized

	Return the normalized name for the vendor.

	
class trigger.netdevices.NetDevices(production_only=True, with_acls=None)

	Returns an immutable Singleton dictionary of
NetDevice objects.

By default it will only return devices for which
adminStatus=='PRODUCTION'.

There are hardly any use cases where NON-PRODUCTION devices are needed,
and it can cause real bugs of two sorts:

	trying to contact unreachable devices and reporting spurious failures,

	hot spares with the same nodeName.

You may override this by passing production_only=False.

	
class _actual(production_only=True, with_acls=None)

	This is the real class that stays active upon instantiation. All
attributes are inherited by NetDevices from this object. This means you
do NOT reference _actual itself, and instead call the methods from
the parent object.

Right:

>>> nd = NetDevices()
>>> nd.search('fw')
[<NetDevice: fw1-xyz.net.aol.com>]

Wrong:

>>> nd._actual.search('fw')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unbound method match() must be called with _actual
instance as first argument (got str instance instead)

	
add_device(device)

	Add a device object to the store.

	Parameters

	device – NetDevice object

	
all()

	Returns all NetDevice objects.

This method can be overloaded in NetDevices loader plugins to
customize the behavior as dictated by the plugin.

	
find(key)

	Return either the exact nodename, or a unique dot-delimited
prefix. For example, if there is a node ‘test1-abc.net.aol.com’,
then any of find(‘test1-abc’) or find(‘test1-abc.net’) or
find(‘test1-abc.net.aol.com’) will match, but not find(‘test1’).

This method can be overloaded in NetDevices loader plugins to
customize the behavior as dictated by the plugin.

	Parameters

	key (string) – Hostname prefix to find.

	Returns

	NetDevice object

	
get_devices_by_type(devtype)

	Returns a list of NetDevice objects with deviceType matching type.

Known deviceTypes: [‘FIREWALL’, ‘ROUTER’, ‘SWITCH’]

	
list_firewalls()

	Returns a list of NetDevice objects with deviceType of FIREWALL

	
list_routers()

	Returns a list of NetDevice objects with deviceType of ROUTER

	
list_switches()

	Returns a list of NetDevice objects with deviceType of SWITCH

	
match(**kwargs)

	Attempt to match values to all keys in @kwargs by dynamically
building a list comprehension. Will throw errors if the keys don’t
match legit NetDevice attributes.

Keys and values are case IN-senstitive. Matches against non-string
values will FAIL.

This method can be overloaded in NetDevices loader plugins to
customize the behavior as dictated by the plugin. If
skip_loader=True the built-in method will be used instead.

Example by reference:

>>> nd = NetDevices()
>>> myargs = {'onCallName':'Data Center', 'model':'FCSLB'}
>>> mydevices = nd(**myargs)

Example by keyword arguments:

>>> mydevices = nd(oncallname='data center', model='fcslb')

	Returns

	List of NetDevice objects

	
search(token, field='nodeName')

	Returns a list of NetDevice objects where other is in
dev.nodeName. The getattr call in the search will allow a
AttributeError from a bogus field lookup so that you
don’t get an empty list thinking you performed a legit query.

For example, this:

>>> field = 'bacon'
>>> [x for x in nd.all() if 'ash' in getattr(x, field)]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'NetDevice' object has no attribute 'bacon'

Is better than this:

>>> [x for x in nd.all() if 'ash' in getattr(x, field, '')]
[]

Because then you know that ‘bacon’ isn’t a field you can search on.

	Parameters

	
	token (string) – Token to search match on in @field

	field (string) – The field to match on when searching

	Returns

	List of NetDevice objects

	
set_loader(loader)

	Set the NetDevices loader and initialize internal dictionary.

	Parameters

	loader – A BaseLoader plugin instance

trigger.netscreen — Juniper NetScreen firewall parser

Parses and manipulates firewall policy for Juniper NetScreen firewall devices.
Broken apart from acl.parser because the approaches are vastly different from each
other.

	
class trigger.netscreen.NSRawPolicy(data, isglobal=0)

	Container for policy definitions.

	
class trigger.netscreen.NSRawGroup(data)

	Container for group definitions.

	
class trigger.netscreen.NetScreen

	Parses and generates NetScreen firewall policy.

	
concatenate_grp(x)

	Used by NetScreen class when grouping policy members.

	
handle_raw_netscreen(rows)

	The parser will hand it’s final output to this function, which decodes
and puts everything in the right place.

	
netmask2cidr(iptuple)

	Converts dotted-quad netmask to cidr notation

	
parse(data)

	Parse policy into list of NSPolicy objects.

	
class trigger.netscreen.NSGroup(name=None, group_type='address', zone=None)

	Container for address/service groups.

	
class trigger.netscreen.NSServiceBook(entries=None)

	Container for built-in service entries and their defaults.

	Example:

	service = NSService(name=”stupid_http”)
service.set_source_port((1,65535))
service.set_destination_port(80)
service.set_protocol(‘tcp’)
print service.output()

	
class trigger.netscreen.NSAddressBook(name='ANY', zone=None)

	Container for address book entries.

	
class trigger.netscreen.NSAddress(name=None, zone=None, addr=None, comment=None)

	Container for individual address items.

	
class trigger.netscreen.NSService(name=None, protocol=None, source_port=(1, 65535), destination_port=(1, 65535), timeout=0, predefined=False)

	Container for individual service items.

	
class trigger.netscreen.NSPolicy(name=None, address_book=<trigger.netscreen.NSAddressBook object>, service_book=<trigger.netscreen.NSServiceBook object>, address_groups=None, service_groups=None, source_zone='Untrust', destination_zone='Trust', id=0, action='permit', isglobal=False)

	Container for individual policy definitions.

trigger.rancid — RANCID Compatibility Library

Parse RANCID db files so they can be converted into Trigger NetDevice objects.

New in version 1.2.

Far from complete. Very early in development. Here is a basic example.

>>> from trigger import rancid
>>> rancid_root = '/path/to/rancid/data'
>>> r = Rancid(rancid_root)
>>> dev = r.devices.get('test1-abc.net.aol.com')
>>> dev
RancidDevice(nodeName='test-abc.net.aol.com', manufacturer='juniper', deviceStatus='up', deviceType=None)

Another option if you want to get the parsed RANCID data directly without
having to create an object is as simple as this:

>>> parsed = rancid.parse_rancid_data('/path/to/dancid/data')

Or using multiple RANCID instances within a single root:

>>> multi_parsed = rancid.parse_rancid_data('/path/to/rancid/data', recurse_subdirs=True)

	
trigger.rancid.parse_rancid_file(rancid_root, filename='router.db', fields=None, delimiter=':')

	Parse a RANCID file and return generator representing a list of lists
mapped to the fields.

	Parameters

	
	rancid_root – Where to find the file

	filename – Name of the file to parse (e.g. router.db)

	fields – (Optional) A list of field names used to map to the device data

	delimiter – (Optional) Field delimiter

	
trigger.rancid.parse_devices(metadata, parser)

	Iterate device metadata to use parser to create and return a
list of network device objects.

	Parameters

	
	metadata – A collection of key/value pairs (Generally returned from
parse_rancid_file)

	parser – A callabale used to create your objects

	
trigger.rancid.walk_rancid_subdirs(rancid_root, config_dirname='configs', fields=None)

	Walk the rancid_root and parse the included RANCID files.

Returns a dictionary keyed by the name of the subdirs with values set to
the parsed data for each RANCID file found inside.

>>> from trigger import rancid
>>> subdirs = rancid.walk_rancid_subdirs('/data/rancid')
>>> subdirs.get('network-security')
{'router.db': <generator object <genexpr> at 0xa5b852c>,
 'routers.all': <generator object <genexpr> at 0xa5a348c>,
 'routers.down': <generator object <genexpr> at 0xa5be9dc>,
 'routers.up': <generator object <genexpr> at 0xa5bea54>}

	Parameters

	
	rancid_root – Where to find the file

	config_dirname – If the ‘configs’ dir is named something else

	fields – (Optional) A list of field names used to map to the device data

	
trigger.rancid.parse_rancid_data(rancid_root, filename='router.db', fields=None, config_dirname='configs', recurse_subdirs=False)

	Parse single or multiple RANCID instances and return an iterator of the
device metadata.

A single instance expects to find ‘router.db’ in rancid_root.

If you set recurise_subdirs, multiple instances will be expected, and a
router.db will be expected to be found in each subdirectory.

	Parameters

	
	rancid_root – Where to find the file

	filename – Name of the file to parse (e.g. router.db)

	fields – (Optional) A list of field names used to map to the device data

	config_dirname – If the ‘configs’ dir is named something else

	recurse_subdirs – Whether to recurse directories (e.g. multiple instances)

	
trigger.rancid.gather_devices(subdir_data, rancid_db_file='router.db')

	Returns a chained iterator of parsed RANCID data, based from the results of
walk_rancid_subdirs.

This iterator is suitable for consumption by
parse_devices or Trigger’s
NetDevices.

	Parameters

	
	rancid_root – Where to find your RANCID files (router.db, et al.)

	rancid_db_file – If it’s named other than router.db

	
class trigger.rancid.Rancid(rancid_root, rancid_db_file='router.db', config_dirname='configs', device_fields=None, device_class=None, recurse_subdirs=False)

	Holds RANCID data. INCOMPLETE.

Defaults to a single RANID instance specified as rancid_root. It will
parse the file found at rancid_db_file and use this to populate the
devices dictionary with instances of device_class.

If you set recurse_subdirs, it is assumed that rancid_root holds
one or more individual RANCID instances and will attempt to walk them,
parse them, and then aggregate all of the resulting device instances into
the devices dictionary.

Still needs:

	Config parsing for metadata (make, model, type, serial, etc.)

	Recursive Config file population/parsing when recurse_subdirs is set

	Parameters

	
	rancid_root – Where to find your RANCID files (router.db, et al.)

	rancid_db_file – If it’s named other than router.db

	config_dir – If it’s named other than configs

	device_fields – A list of field names used to map to the device data. These must match
the attributes expected by device_class.

	device_class – If you want something other than RancidDevice

	recurse_subdirs – Whether you want to recurse directories.

	
class trigger.rancid.RancidDevice

	A simple subclass of namedtuple to store contents of parsed RANCID files.

Designed to support all router.* files. The field names are intended to be
compatible with Trigger’s NetDevice objects.

	Parameters

	
	nodeName – Hostname of device

	manufacturer – Vendor/manufacturer name of device

	deviceStatus – (Optional) Up/down status of device

	deviceType – (Optional) The device type… determined somehow

trigger.tacacsrc — Network credentials library

Abstract interface to .tacacsrc credentials file.

Designed to interoperate with the legacy DeviceV2 implementation, but
provide a reasonable API on top of that. The name and format of the
.tacacsrc file are not ideal, but compatibility matters.

	
trigger.tacacsrc.get_device_password(device=None, tcrc=None)

	Fetch the password for a device/realm or create a new entry for it.
If device is not passed, settings.DEFAULT_REALM is used, which is default
realm for most devices.

	Parameters

	
	device – Realm or device name to updated

	device – Optional Tacacsrc instance

	
trigger.tacacsrc.prompt_credentials(device, user=None)

	Prompt for username, password and return them as Credentials namedtuple.

	Parameters

	
	device – Device or realm name to store

	user – (Optional) If set, use as default username

	
trigger.tacacsrc.convert_tacacsrc()

	Converts old .tacacsrc to new .tacacsrc.gpg.

	
trigger.tacacsrc.update_credentials(device, username=None)

	Update the credentials for a given device/realm. Assumes the same username
that is already cached unless it is passed.

This may seem redundant at first compared to Tacacsrc.update_creds() but we
need this factored out so that we don’t end up with a race condition when
credentials are messed up.

Returns True if it actually updated something or None if it didn’t.

	Parameters

	
	device – Device or realm name to update

	username – Username for credentials

	
trigger.tacacsrc.validate_credentials(creds=None)

	Given a set of credentials, try to return a Credentials
object.

If creds is unset it will fetch from .tacacsrc.

Expects either a 2-tuple of (username, password) or a 3-tuple of (username,
password, realm). If only (username, password) are provided, realm will be populated from
DEFAULT_REALM.

	Parameters

	creds – A tuple of credentials.

	
class trigger.tacacsrc.Credentials(username, password, realm)

	
	
password

	Alias for field number 1

	
realm

	Alias for field number 2

	
username

	Alias for field number 0

	
class trigger.tacacsrc.Tacacsrc(tacacsrc_file=None, use_gpg=False, generate_new=False)

	Encrypts, decrypts and returns credentials for use by network devices and
other tools.

Pass use_gpg=True to force GPG, otherwise it relies on
settings.USE_GPG_AUTH

*_old functions should be removed after everyone is moved to the new
system.

	
update_creds(creds, realm, user=None)

	Update username/password for a realm/device and set self.creds_updated
bit to trigger .write().

	Parameters

	
	creds – Dictionary of credentials keyed by realm

	realm – The realm to update within the creds dict

	user – (Optional) Username passed to prompt_credentials()

	
user_has_gpg()

	Checks if user has .gnupg directory and .tacacsrc.gpg file.

	
write()

	Writes .tacacsrc(.gpg) using the accurate method (old vs. new).

trigger.twister — Asynchronous device interaction library

Login and basic command-line interaction support using the Twisted asynchronous
I/O framework. The Trigger Twister is just like the Mersenne Twister, except
not at all.

	
class trigger.twister.IncrementalXMLTreeBuilder(callback, *args, **kwargs)

	Version of XMLTreeBuilder that runs a callback on each tag.

We need this because JunoScript treats the entire session as one XML
document. IETF NETCONF fixes that.

	
class trigger.twister.Interactor(log_to=None)

	Creates an interactive shell.

Intended for use as an action with pty_connect(). See gong for an example.

	
connectionMade()

	Fire up stdin/stdout once we connect.

	
dataReceived(data)

	And write data to the terminal.

	
loseConnection()

	Terminate the connection. Link this to the transport method of the same
name.

	
class trigger.twister.IoslikeSendExpect(device, commands, incremental=None, with_errors=False, timeout=None, command_interval=0)

	Action for use with TriggerTelnet as a state machine.

Take a list of commands, and send them to the device until we run out or
one errors. Wait for a prompt after each.

	
connectionMade()

	Do this when we connect.

	
dataReceived(bytes)

	Do this when we get data.

	
timeoutConnection()

	Do this when we timeout.

	
class trigger.twister.TriggerClientFactory(deferred, creds=None, init_commands=None)

	Factory for all clients. Subclass me.

	
clientConnectionFailed(connector, reason)

	Do this when the connection fails.

	
clientConnectionLost(connector, reason)

	Do this when the connection is lost.

	
stopFactory()

	This will be called before I stop listening on all Ports/Connectors.

This can be overridden to perform ‘shutdown’ tasks such as disconnecting
database connections, closing files, etc.

It will be called, for example, before an application shuts down,
if it was connected to a port. User code should not call this function
directly.

	
class trigger.twister.TriggerSSHAsyncPtyChannel(localWindow=0, localMaxPacket=0, remoteWindow=0, remoteMaxPacket=0, conn=None, data=None, avatar=None)

	An SSH channel that requests a non-interactive pty intended for async
usage.

Some devices won’t allow a shell without a pty, so we have to do a
‘pty-req’.

This is distinctly different from ~trigger.twister.TriggerSSHPtyChannel`
which is intended for interactive end-user sessions.

	
channelOpen(data)

	Do this when the channel opens.

	
class trigger.twister.TriggerSSHChannelBase(localWindow=0, localMaxPacket=0, remoteWindow=0, remoteMaxPacket=0, conn=None, data=None, avatar=None)

	Base class for SSH channels.

The method self._setup_channelOpen() should be called by channelOpen() in
the subclasses. Before you subclass, however, see if you can’t just use
TriggerSSHGenericChannel as-is!

	
channelOpen(data)

	Do this when the channel opens.

	
dataReceived(bytes)

	Do this when we receive data.

	
loseConnection()

	Terminate the connection. Link this to the transport method of the same
name.

	
timeoutConnection()

	Do this when the connection times out.

	
class trigger.twister.TriggerSSHChannelFactory(deferred, commands, creds=None, incremental=None, with_errors=False, timeout=None, channel_class=None, command_interval=0, prompt_pattern=None, device=None, connection_class=None)

	Intended to be used as a parent of automated SSH channels (e.g. Junoscript,
NetScreen, NetScaler) to eliminate boiler plate in those subclasses.

	
buildProtocol(addr)

	Create an instance of a subclass of Protocol.

The returned instance will handle input on an incoming server
connection, and an attribute “factory” pointing to the creating
factory.

Alternatively, L{None} may be returned to immediately close the
new connection.

Override this method to alter how Protocol instances get created.

@param addr: an object implementing L{twisted.internet.interfaces.IAddress}

	
class trigger.twister.TriggerSSHCommandChannel(command, *args, **kwargs)

	Run SSH commands on a system using ‘exec’

This will multiplex channels over a single connection. Because of the
nature of the multiplexing setup, the master list of commands is stored on
the SSH connection, and the state of each command is stored within each
individual channel which feeds its result back to the factory.

	
channelOpen(data)

	Do this when the channel opens.

	
closeReceived()

	Called when the other side has closed the channel.

	
closed()

	Called when the channel is closed. This means that both our side and
the remote side have closed the channel.

	
dataReceived(bytes)

	Do this when we receive data.

	
eofReceived()

	Called when the other side will send no more data.

	
loseConnection()

	Default loseConnection

	
send_next_command()

	Send the next command in the stack stored on the connection

	
class trigger.twister.TriggerSSHConnection(commands=None, *args, **kwargs)

	Used to manage, you know, an SSH connection.

Optionally takes a list of commands that may be passed on.

	
channelClosed(channel)

	Forcefully close the transport connection when a channel closes
connection. This is assuming only one channel is open.

	
serviceStarted()

	Open the channel once we start.

	
class trigger.twister.TriggerSSHGenericChannel(localWindow=0, localMaxPacket=0, remoteWindow=0, remoteMaxPacket=0, conn=None, data=None, avatar=None)

	An SSH channel using all of the Trigger defaults to interact with network
devices that implement SSH without any tricks.

Currently A10, Cisco, Brocade, NetScreen can simply use this. Nice!

Before you create your own subclass, see if you can’t use me as-is!

	
class trigger.twister.TriggerSSHJunoscriptChannel(localWindow=0, localMaxPacket=0, remoteWindow=0, remoteMaxPacket=0, conn=None, data=None, avatar=None)

	An SSH channel to execute Junoscript commands on a Juniper device running
Junos.

This completely assumes that we are the only channel in the factory (a
TriggerJunoscriptFactory) and walks all the way back up to the factory for
its arguments.

	
channelOpen(data)

	Do this when channel opens.

	
dataReceived(data)

	Do this when we receive data.

	
class trigger.twister.TriggerSSHMultiplexConnection(commands=None, *args, **kwargs)

	Used for multiplexing SSH ‘exec’ channels on a single connection.

Opens a new channel for each command in the stack once the previous channel
has closed. In this pattern the Connection and the Channel are intertwined.

	
channelClosed(channel)

	Close the channel when we’re done. But not the transport connection

	
send_command()

	Send the next command in the stack once the previous channel has closed

	
class trigger.twister.TriggerSSHNetscalerChannel(localWindow=0, localMaxPacket=0, remoteWindow=0, remoteMaxPacket=0, conn=None, data=None, avatar=None)

	An SSH channel to interact with Citrix NetScaler hardware.

It’s almost a generic SSH channel except that we must check for errors
first, because a prompt is not returned when an error is received. This had
to be accounted for in the dataReceived() method.

	
dataReceived(bytes)

	Do this when we receive data.

	
class trigger.twister.TriggerSSHPica8Channel(localWindow=0, localMaxPacket=0, remoteWindow=0, remoteMaxPacket=0, conn=None, data=None, avatar=None)

	
	
channelOpen(data)

	Override channel open, which is where commanditer is setup in the
base class.

	
class trigger.twister.TriggerSSHPtyChannel(localWindow=0, localMaxPacket=0, remoteWindow=0, remoteMaxPacket=0, conn=None, data=None, avatar=None)

	Used by pty_connect() to turn up an interactive SSH pty channel.

	
channelOpen(data)

	Setup the terminal when the channel opens.

	
class trigger.twister.TriggerSSHPtyClientFactory(deferred, action, creds=None, display_banner=None, init_commands=None, device=None)

	Factory for an interactive SSH connection.

‘action’ is a Protocol that will be connected to the session after login.
Use it to interact with the user and pass along commands.

	
class trigger.twister.TriggerSSHTransport

	SSH transport with Trigger’s defaults.

Call with magic factory attributes creds, a tuple of login
credentials, and connection_class, the class of channel to open, and
commands, the list of commands to pass to the connection.

	
connectionLost(reason)

	Detect when the transport connection is lost, such as when the
remote end closes the connection prematurely (hosts.allow, etc.)

	
connectionMade()

	Once the connection is up, set the ciphers but don’t do anything else!

	
connectionSecure()

	Once we’re secure, authenticate.

	
dataReceived(data)

	Explicity override version detection for edge cases where “SSH-”
isn’t on the first line of incoming data.

	
receiveError(reason, desc)

	Do this when we receive an error.

	
sendDisconnect(reason, desc)

	Trigger disconnect of the transport.

	
verifyHostKey(pubKey, fingerprint)

	Verify host key, but don’t actually verify. Awesome.

	
class trigger.twister.TriggerSSHUserAuth(user, options, *args)

	Perform user authentication over SSH.

	
getGenericAnswers(name, information, prompts)

	Send along the password when authentication mechanism is not ‘password’
This is most commonly the case with ‘keyboard-interactive’, which even
when configured within self.preferredOrder, does not work using default
getPassword() method.

	
getPassword(prompt=None)

	Send along the password.

	
ssh_USERAUTH_BANNER(packet)

	Display SSH banner.

	
ssh_USERAUTH_FAILURE(packet)

	An almost exact duplicate of SSHUserAuthClient.ssh_USERAUTH_FAILURE
modified to forcefully disconnect. If we receive authentication
failures, instead of looping until the server boots us and performing a
sendDisconnect(), we raise a LoginFailure and
call loseConnection().

See the base docstring for the method signature.

	
class trigger.twister.TriggerTelnet(timeout=60)

	Telnet-based session login state machine. Primarily used by IOS-like type
devices.

	
enableRemote(option)

	Allow telnet clients to enable options if for some reason they aren’t
enabled already (e.g. ECHO). (Ref: http://bit.ly/wkFZFg) For some
reason Arista Networks hardware is the only vendor that needs this
method right now.

	
login_state_machine(bytes)

	Track user login state.

	
state_enable()

	Special Foundry breakage because they don’t do auto-enable from
TACACS by default. Use ‘aaa authentication login privilege-mode’.
Also, why no space after the Password: prompt here?

	
state_enable_pw()

	Pass the enable password from the factory or NetDevices

	
state_logged_in()

	Once we’re logged in, exit state machine and pass control to the
action.

	
state_login_pw()

	Pass the login password from the factory or NetDevices

	
state_password()

	After we got password prompt, check for enabled prompt.

	
state_percent_error()

	Found a % error message. Don’t return immediately because we
don’t have the error text yet.

	
state_raise_error()

	Do this when we get a login failure.

	
state_username()

	After we’ve gotten username, check for password prompt.

	
timeoutConnection()

	Do this when we timeout logging in.

	
class trigger.twister.TriggerTelnetClientFactory(deferred, action, creds=None, loginpw=None, enablepw=None, init_commands=None, device=None)

	Factory for a telnet connection.

	
trigger.twister.connect(device, init_commands=None, output_logger=None, login_errback=None, reconnect_handler=None)

	Connect to a network device via pty for an interactive shell.

	Parameters

	
	device – A NetDevice object.

	init_commands – (Optional) A list of commands to execute upon logging into the device.
If not set, they will be attempted to be read from .gorc.

	output_logger – (Optional) If set all data received by the device, including user
input, will be written to this logger. This logger must behave like a
file-like object and a implement a write() method. Hint: Use
StringIO.

	login_errback – (Optional) An callable to be used as an errback that will handle the
login failure behavior. If not set the default handler will be used.

	reconnect_handler – (Optional) A callable to handle the behavior of an authentication
failure after a login has failed. If not set default handler will be
used.

	
trigger.twister.execute(device, commands, creds=None, incremental=None, with_errors=False, timeout=300, command_interval=0, force_cli=False)

	Connect to a device and sequentially execute all the commands in the
iterable commands.

Returns a Twisted Deferred object, whose callback will get a sequence
of all the results after the connection is finished.

commands is usually just a list, however, you can have also make it a
generator, and have it and incremental share a closure to some state
variables. This allows you to determine what commands to execute
dynamically based on the results of previous commands. This implementation
is experimental and it might be a better idea to have the incremental
callback determine what command to execute next; it could then be a method
of an object that keeps state.

BEWARE: Your generator cannot block; you must immediately
decide what next command to execute, if any.

Any None in the command sequence will result in a None being placed
in the output sequence, with no command issued to the device.

If any command returns an error, the connection is dropped immediately and
the errback will fire with the failed command. You may set with_errors
to get the exception objects in the list instead.

Connection failures will still fire the errback.

LoginTimeout errors are always possible if the login
process takes longer than expected and cannot be disabled.

	Parameters

	
	device – A NetDevice object

	commands – An iterable of commands to execute (without newlines).

	creds – (Optional) A 2-tuple of (username, password). If unset it will fetch it
from .tacacsrc.

	incremental – (Optional) A callback that will be called with an empty sequence upon
connection and then called every time a result comes back from the
device, with the list of all results.

	with_errors – (Optional) Return exceptions as results instead of raising them

	timeout – (Optional) Command response timeout in seconds. Set to None to
disable. The default is in settings.DEFAULT_TIMEOUT.
CommandTimeout errors will result if a command
seems to take longer to return than specified.

	command_interval – (Optional) Amount of time in seconds to wait between sending commands.

	force_cli – (Optional) Juniper-only: Force use of CLI instead of Junoscript.

	Returns

	A Twisted Deferred object

	
trigger.twister.execute_async_pty_ssh(device, commands, creds=None, incremental=None, with_errors=False, timeout=300, command_interval=0, prompt_pattern=None)

	Execute via SSH for a device that requires shell + pty-req.

Please see execute for a full description of the
arguments and how this works.

	
trigger.twister.execute_exec_ssh(device, commands, creds=None, incremental=None, with_errors=False, timeout=300, command_interval=0)

	Use multiplexed SSH ‘exec’ command channels to execute commands.

This will maintain a single SSH connection and run each new command in a
separate channel after the previous command completes.

Please see execute for a full description of the
arguments and how this works.

	
trigger.twister.execute_generic_ssh(device, commands, creds=None, incremental=None, with_errors=False, timeout=300, command_interval=0, channel_class=None, prompt_pattern=None, method='Generic', connection_class=None)

	Use default SSH channel to execute commands on a device. Should work with
anything not wonky.

Please see execute for a full description of the
arguments and how this works.

	
trigger.twister.execute_ioslike(device, commands, creds=None, incremental=None, with_errors=False, timeout=300, command_interval=0, loginpw=None, enablepw=None)

	Execute commands on a Cisco/IOS-like device. It will automatically try to
connect using SSH if it is available and not disabled in settings.py.
If SSH is unavailable, it will fallback to telnet unless that is also
disabled in the settings. Otherwise it will fail, so you should probably
make sure one or the other is enabled!

Please see execute for a full description of the
arguments and how this works.

	
trigger.twister.execute_ioslike_ssh(device, commands, creds=None, incremental=None, with_errors=False, timeout=300, command_interval=0)

	Execute via SSH for IOS-like devices with some exceptions.

Please see execute for a full description of the
arguments and how this works.

	
trigger.twister.execute_ioslike_telnet(device, commands, creds=None, incremental=None, with_errors=False, timeout=300, command_interval=0, loginpw=None, enablepw=None)

	Execute commands via telnet on a Cisco/IOS-like device.

Please see execute for a full description of the
arguments and how this works.

	
trigger.twister.execute_junoscript(device, commands, creds=None, incremental=None, with_errors=False, timeout=300, command_interval=0)

	Connect to a Juniper device and enable Junoscript XML mode. All commands
are expected to be XML commands (ElementTree.Element objects suitable for
wrapping in <rpc> elements). Errors are expected to be of type
xnm:error. Note that prompt detection is not used here.

Please see execute for a full description of the
arguments and how this works.

	
trigger.twister.execute_netscaler(device, commands, creds=None, incremental=None, with_errors=False, timeout=300, command_interval=0)

	Execute commands on a NetScaler device.

Please see execute for a full description of the
arguments and how this works.

	
trigger.twister.execute_netscreen(device, commands, creds=None, incremental=None, with_errors=False, timeout=300, command_interval=0)

	Execute commands on a NetScreen device running ScreenOS. For NetScreen
devices running Junos, use execute_junoscript.

Please see execute for a full description of the
arguments and how this works.

	
trigger.twister.execute_pica8(device, commands, creds=None, incremental=None, with_errors=False, timeout=300, command_interval=0)

	Execute commands on a Pica8 device. This is only needed to append
‘| no-more’ to show commands because Pica8 currently (v2.2) lacks
a global command to disable paging.

Please see execute for a full description of the
arguments and how this works.

	
trigger.twister.handle_login_failure(failure)

	An errback to try detect a login failure

	Parameters

	failure – A Twisted Failure instance

	
trigger.twister.has_ioslike_error(s)

	Test whether a string seems to contain an IOS-like error.

	
trigger.twister.has_juniper_error(s)

	Test whether a string seems to contain an Juniper error.

	
trigger.twister.has_junoscript_error(tag)

	Test whether an Element contains a Junoscript xnm:error.

	
trigger.twister.has_netscaler_error(s)

	Test whether a string seems to contain a NetScaler error.

	
trigger.twister.is_awaiting_confirmation(prompt)

	Checks if a prompt is asking for us for confirmation and returns a Boolean.

New patterns may be added by customizing settings.CONTINUE_PROMPTS.

>>> from trigger.twister import is_awaiting_confirmation
>>> is_awaiting_confirmation('Destination filename [running-config]? ')
True

	Parameters

	prompt – The prompt string to check

	
trigger.twister.pty_connect(device, action, creds=None, display_banner=None, ping_test=False, init_commands=None)

	Connect to a device and log in. Use SSHv2 or telnet as appropriate.

	Parameters

	
	device – A NetDevice object.

	action – A Twisted Protocol instance (not class) that will be activated when
the session is ready.

	creds – A 2-tuple (username, password). By default, credentials from
.tacacsrc will be used according to settings.DEFAULT_REALM.
Override that here.

	display_banner – Will be called for SSH pre-authentication banners. It will receive two
args, banner and language. By default, nothing will be done
with the banner.

	ping_test – If set, the device is pinged and must succeed in order to proceed.

	init_commands – A list of commands to execute upon logging into the device.

	Returns

	A Twisted Deferred object

	
trigger.twister.requires_enable(proto_obj, data)

	Check if a device requires enable.

	Parameters

	
	proto_obj – A Protocol object such as an SSHChannel

	data – The channel data to check for an enable prompt

	
trigger.twister.send_enable(proto_obj, disconnect_on_fail=True)

	Send ‘enable’ and enable password to device.

	Parameters

	
	proto_obj – A Protocol object such as an SSHChannel

	disconnect_on_fail – If set, will forcefully disconnect on enable password failure

	
trigger.twister.stop_reactor()

	Stop the reactor if it’s already running.

trigger.utils — CLI tools and utilities library

A collection of CLI tools and utilities used by Trigger.

	
class trigger.utils.JuniperElement(key, value)

	
	
key

	Alias for field number 0

	
value

	Alias for field number 1

	
trigger.utils.NodePort

	alias of trigger.utils.HostPort

	
trigger.utils.crypt_md5(passwd)

	Returns an md5-crypt hash of a clear-text password.

To get md5-crypt from crypt(3) you must pass an 8-char string starting with
‘1’ and ending with ‘$’, resulting in a 12-char salt. This only works on
systems where md5-crypt is default and is currently assumed to be Linux.

	Parameters

	passwd – Password string to be encrypted

	
trigger.utils.parse_node_port(nodeport, delimiter=':')

	Parse a string in format ‘hostname’ or ‘hostname:port’ and return them
as a 2-tuple.

	
trigger.utils.strip_juniper_namespace(path, key, value)

	Given a Juniper XML element, strip the namespace and return a 2-tuple.

This is designed to be used as a postprocessor with
parse().

	Parameters

	
	key – The attribute name of the element.

	value – The value of the element.

trigger.utils.cli

Command-line interface utilities for Trigger tools. Intended for re-usable
pieces of code like user prompts, that don’t fit in other utils modules.

	
trigger.utils.cli.yesno(prompt, default=False, autoyes=False)

	Present a yes-or-no prompt, get input, and return a boolean.

The default argument is ignored if autoyes is set.

	Parameters

	
	prompt – Prompt text

	default – Yes if True; No if False

	autoyes – Automatically return True

Default behavior (hitting “enter” returns False):

>>> yesno('Blow up the moon?')
Blow up the moon? (y/N)
False

Reversed behavior (hitting “enter” returns True):

>>> yesno('Blow up the moon?', default=True)
Blow up the moon? (Y/n)
True

Automatically return True with autoyes; no prompt is displayed:

>>> yesno('Blow up the moon?', autoyes=True)
True

	
trigger.utils.cli.get_terminal_width()

	Find and return stdout’s terminal width, if applicable.

	
trigger.utils.cli.get_terminal_size()

	Find and return stdouts terminal size as (height, width)

	
class trigger.utils.cli.Whirlygig(start_msg='', done_msg='', max=100)

	Prints a whirlygig for use in displaying pending operation in a command-line tool.
Guaranteed to make the user feel warm and fuzzy and be 1000% bug-free.

	Parameters

	
	start_msg – The status message displayed to the user (e.g. “Doing stuff:”)

	done_msg – The completion message displayed upon completion (e.g. “Done.”)

	max – Integer of the number of whirlygig repetitions to perform

Example:

>>> Whirlygig("Doing stuff:", "Done.", 12).run()

	
run()

	Executes the whirlygig!

	
class trigger.utils.cli.NullDevice

	Used to supress output to sys.stdout (aka print).

Example:

>>> from trigger.utils.cli import NullDevice
>>> import sys
>>> print "1 - this will print to STDOUT"
1 - this will print to STDOUT
>>> original_stdout = sys.stdout # keep a reference to STDOUT
>>> sys.stdout = NullDevice() # redirect the real STDOUT
>>> print "2 - this won't print"
>>>
>>> sys.stdout = original_stdout # turn STDOUT back on
>>> print "3 - this will print to SDTDOUT"
3 - this will print to SDTDOUT

	
trigger.utils.cli.print_severed_head()

	Prints a demon holding a severed head. Best used when things go wrong, like
production-impacting network outages caused by fat-fingered ACL changes.

Thanks to Jeff Sullivan for this best error message ever.

	
trigger.utils.cli.min_sec(secs)

	Takes an epoch timestamp and returns string of minutes:seconds.

	Parameters

	secs – Timestamp (in seconds)

>>> import time
>>> start = time.time() # Wait a few seconds
>>> finish = time.time()
>>> min_sec(finish - start)
'0:11'

	
trigger.utils.cli.pretty_time(t)

	Print a pretty version of timestamp, including timezone info. Expects
the incoming datetime object to have proper tzinfo.

	Parameters

	t – A datetime.datetime object

>>> import datetime
>>> from pytz import timezone
>>> localzone = timezone('US/Eastern')
<DstTzInfo 'US/Eastern' EST-1 day, 19:00:00 STD>
>>> t = datetime.datetime.now(localzone)
>>> print t
2011-07-19 12:40:30.820920-04:00
>>> print pretty_time(t)
09:40 PDT
>>> t = localzone.localize(datetime.datetime(2011,07,20,04,13))
>>> print t
2011-07-20 04:13:00-05:00
>>> print pretty_time(t)
tomorrow 02:13 PDT

	
trigger.utils.cli.proceed()

	Present a proceed prompt. Return True if Y, else False

	
trigger.utils.cli.get_user()

	Return the name of the current user.

trigger.utils.importlib

Utils to import modules.

Taken verbatim from django.utils.importlib in Django 1.4.

	
trigger.utils.importlib.import_module(name, package=None)

	Import a module and return the module object.

The package argument is required when performing a relative import. It
specifies the package to use as the anchor point from which to resolve the
relative import to an absolute import.

	
trigger.utils.importlib.import_module_from_path(full_path, global_name)

	Import a module from a file path and return the module object.

Allows one to import from anywhere, something __import__() does not do.
The module is added to sys.modules as global_name.

	Parameters

	
	full_path – The absolute path to the module .py file

	global_name – The name assigned to the module in sys.modules. To avoid
confusion, the global_name should be the same as the variable to which
you’re assigning the returned module.

trigger.utils.network

Functions that perform network-based things like ping, port tests, etc.

	
trigger.utils.network.ping(host, count=1, timeout=5)

	Returns pass/fail for a ping. Supports POSIX only.

	Parameters

	
	host – Hostname or address

	count – Repeat count

	timeout – Timeout in seconds

>>> from trigger.utils import network
>>> network.ping('aol.com')
True
>>> network.ping('192.168.199.253')
False

	
trigger.utils.network.test_tcp_port(host, port=23, timeout=5, check_result=False, expected_result='')

	Attempts to connect to a TCP port. Returns a Boolean.

If check_result is set, the first line of output is retreived from the
connection and the starting characters must match expected_result.

	Parameters

	
	host – Hostname or address

	port – Destination port

	timeout – Timeout in seconds

	check_result – Whether or not to do a string check (e.g. version banner)

	expected_result – The expected result!

>>> test_tcp_port('aol.com', 80)
True
>>> test_tcp_port('aol.com', 12345)
False

	
trigger.utils.network.test_ssh(host, port=22, timeout=5, version=('SSH-1.99', 'SSH-2.0', 'dcos_sshd run in non-FIPS mode'))

	Connect to a TCP port and confirm the SSH version. Defaults to SSHv2.

Note that the default of (‘SSH-1.99’, ‘SSH-2.0’) both indicate SSHv2 per
RFC 4253. (Ref: http://en.wikipedia.org/wiki/Secure_Shell#Version_1.99)

	Parameters

	
	host – Hostname or address

	port – Destination port

	timeout – Timeout in seconds

	version – The SSH version prefix (e.g. “SSH-2.0”). This may also be a tuple of
prefixes.

>>> test_ssh('localhost')
True
>>> test_ssh('localhost', version='SSH-1.5')
False

	
trigger.utils.network.address_is_internal(ip)

	Determines if an IP address is internal to your network. Relies on
networks specified in settings.INTERNAL_NETWORKS.

	Parameters

	ip – IP address to test.

>>> address_is_internal('1.1.1.1')
False

trigger.utils.notifications

Pluggable event notification system for Trigger.

	
trigger.utils.notifications.send_email(addresses, subject, body, sender, mailhost='localhost')

	Sends an email to a list of recipients. Returns True when done.

	Parameters

	
	addresses – List of email recipients

	subject – The email subject

	body – The email body

	sender – The email sender

	mailhost – (Optional) Mail server address

	
trigger.utils.notifications.send_notification(*args, **kwargs)

	Simple entry point into notify that
takes any arguments and tries to handle them to send a notification.

This relies on handlers to be definied within
settings.NOTIFICATION_HANDLERS.

	
trigger.utils.notifications.email_handler(*args, **kwargs)

	Default email notification handler.

	
trigger.utils.notifications.notify(*args, **kwargs)

	Iterate thru registered handlers to handle events and send notifications.

Handlers should return True if they have performed the desired action
or None if they have not.

trigger.utils.notifications.handlers

Handlers for event notifications.

Handlers are specified by full module path within
settings.NOTIFICATION_HANDLERS. These are then imported and registered
internally in this module.

The primary public interface to this module is
notify which is in turn called by
send_notification to send notifications.

Handlers should return True if they have performed the desired action
or None if they have not.

A handler can either define its own custom behavior, or leverage a custom
Event object. The goal was to provide a
simple public interface to customizing event notifications.

If not customized within NOTIFICATION_HANDLERS, the default
notification type is an EmailEvent that is
handled by email_handler.

	
trigger.utils.notifications.handlers.email_handler(*args, **kwargs)

	Default email notification handler.

	
trigger.utils.notifications.handlers.notify(*args, **kwargs)

	Iterate thru registered handlers to handle events and send notifications.

Handlers should return True if they have performed the desired action
or None if they have not.

trigger.utils.notifications.events

Event objects for the notification system.

These are intended to be used within event handlers such as
email_handler().

If not customized within NOTIFICATION_HANDLERS, the default
notification type is an EmailEvent that is
handled by email_handler.

	
class trigger.utils.notifications.events.Event(**kwargs)

	Base class for events.

It just populates the attribute dict with all keyword arguments thrown at
the constructor.

All Event objects are expected to have a .handle() method that
willl be called by a handler function. Any user-defined event objects must
have a working .handle() method that returns True upon success or
None upon a failure when handling the event passed to it.

If you specify required_args, these must have a value other than
None when passed to the constructor.

	
class trigger.utils.notifications.events.Notification(title=None, message=None, sender=None, recipients=None, event_status='failure', **kwargs)

	Base class for notification events.

The title and message arguments are the only two that are required.
This is to simplify the interface when sending notifications and will cause
notifications to send from the default sender to the default
``recipients that are specified withing the global settings.

If sender or recipients are specified, they will override the
global defaults.

Note that this base class has no .handle() method defined.

	Parameters

	
	title – The title/subject of the notification

	message – The message/body of the notification

	sender – A string representing the sender of the notification (such as an email
address or a hostname)

	recipients – An iterable containing strings representing the recipients of of the
notification (such as a list of emails or hostnames)

	event_status – Whether this event is a failure or a success

	
class trigger.utils.notifications.events.EmailEvent(title=None, message=None, sender=None, recipients=None, event_status='failure', **kwargs)

	An email notification event.

trigger.utils.rcs

Provides a CVS like wrapper for local RCS (Revision Control System) with common commands.

	
class trigger.utils.rcs.RCS(filename, create=True)

	Simple wrapper for CLI rcs command. An instance is bound to a file.

	Parameters

	
	file – The filename (or path) to use

	create – If set, create the file if it doesn’t exist

>>> from trigger.utils.rcs import RCS
>>> rcs = RCS('foo')
>>> rcs.lock()
True
>>> f = open('foo', 'w')
>>> f.write('bar\n')
>>> f.close()
>>> rcs.checkin('This is my commit message')
True
>>> print rcs.log()
RCS file: RCS/foo,v
Working file: foo
head: 1.2
branch:
locks: strict
access list:
symbolic names:
keyword substitution: kv
total revisions: 2; selected revisions: 2
description:

revision 1.2
date: 2011/07/08 21:01:28; author: jathan; state: Exp; lines: +1 -0
This is my commit message

revision 1.1
date: 2011/07/08 20:56:53; author: jathan; state: Exp;
first commit

	
checkin(logmsg='none', initial=False, verbose=False)

	Perform an RCS checkin. If successful this also unlocks the file, so
there is no need to unlock it afterward.

	Parameters

	
	logmsg – The RCS commit message

	initial – Initialize a new RCS file, but do not deposit any revision

	verbose – Print command output

>>> rcs.checkin('This is my commit message')
True

	
lock(verbose=False)

	Perform an RCS checkout with lock. Returns boolean of whether lock
was sucessful.

	Parameters

	verbose – Print command output

>>> rcs.lock()
True

	
lock_loop(callback=None, timeout=5, verbose=False)

	Keep trying to lock the file until a lock is obtained.

	Parameters

	
	callback – The function to call after lock is complete

	timeout – How long to sleep between lock attempts

	verbose – Print command output

	Default:

	>>> rcs.lock_loop(timeout=1)
Sleeping to wait for the lock on the file: foo
Sleeping to wait for the lock on the file: foo

	Verbose:

	>>> rcs.lock_loop(timeout=1, verbose=True)
RCS/foo,v --> foo
co: RCS/foo,v: Revision 1.2 is already locked by joe.
Sleeping to wait for the lock on the file: foo
RCS/foo,v --> foo
co: RCS/foo,v: Revision 1.2 is already locked by joe.

	
log()

	Returns the RCS log as a string (see above).

	
unlock(verbose=False)

	Perform an RCS checkout with unlock (for cancelling changes).

	Parameters

	verbose – Print command output

>>> rcs.unlock()
True

Development

The Trigger developement team is currently a one-man operation led by Jathan
McCollum [http://about.me/jathanism], aka jathanism.

Road Map

We are using milestones [https://github.com/trigger/trigger/milestones]
to track Trigger’s development path 30 to 90 days out. This is where we map
outstanding issues to upcoming releases and is the best way to see what’s
coming!

Contributing

There are several ways to get involved with Trigger:

	Use Trigger and send us feedback! This is the best and easiest way to
improve the project – let us know how you currently use Trigger and how you
want to use it. (Please search the ticket tracker [https://github.com/trigger/trigger/issues] first, though, when submitting
feature ideas.)

	Report bugs. If you use Trigger and think you’ve found a bug, check on
the ticket tracker [https://github.com/trigger/trigger/issues] to see if
anyone’s reported it yet, and if not – file a bug! If you can, please try to
make sure you can replicate the problem, and provide us with the info we need
to reproduce it ourselves (what version of Trigger you’re using, what
platform you’re on, and what exactly you were doing when the bug cropped up.)

	Submit patches or new features. Make a Github [https://github.com]
account, create a fork [http://help.github.com/fork-a-repo/] of the main
Trigger repository [https://github.com/trigger/trigger], and submit a pull
request [http://help.github.com/send-pull-requests/].

All contributors will receive proper attribution for their work. We want to
give credit where it is due!

Communication

If an issue ticket exists for a given issue, please keep all communication
in that ticket’s comments. Otherwise, please use whatever avenue of
communication works best for you!

Style

Trigger tries very diligently to honor PEP-8 [http://www.python.org/dev/peps/pep-0008/], especially (but not limited
to!) the following:

	Keep all lines under 80 characters. This goes for the ReST documentation as
well as code itself.

	Exceptions are made for situations where breaking a long string (such as a
string being print-ed from source code, or an especially long URL link
in documentation) would be kind of a pain.

	Typical Python 4-space (soft-tab) indents. No tabs! No 8 space indents! (No
2- or 3-space indents, for that matter!)

	CamelCase class names, but lowercase_underscore_separated everything
else.

Branching/Repository Layout

While Trigger’s development methodology isn’t set in stone yet, the following
items detail how we currently organize the Git repository and expect to perform
merges and so forth. This will be chiefly of interest to those who wish to
follow a specific Git branch instead of released versions, or to any
contributors.

	Completed feature work is merged into the master branch, and once enough
new features are done, a new release branch is created and optionally used to
create prerelease versions for testing – or simply released as-is.

	While we try our best not to commit broken code or change APIs without
warning, as with many other open-source projects we can only have a guarantee
of stability in the release branches. Only follow develop (or, even worse,
feature branches!) if you’re willing to deal with a little pain.

	Bugfixes are to be performed on release branches and then merged into
develop so that develop is always up-to-date (or nearly so; while it’s
not mandatory to merge after every bugfix, doing so at least daily is a good
idea.)

Releases

We use semantic versioning [http://semver.org]. Version numbers should
follow this format:

{Major version}.{Minor version}.{Revision number}.{Build number (optional)}

Major

Major releases update the first number, e.g. going from 0.9 to 1.0, and
indicate that the software has reached some very large milestone.

For example, the 1.0 release signified a commitment to a medium to long term
API and some significant backwards incompatible (compared to the 0.9 series)
features. Version 2.0 might indicate a rewrite using a new underlying network
technology or an overhaul to be more object-oriented.

Major releases will often be backwards-incompatible with the previous line of
development, though this is not a requirement, just a usual happenstance.
Users should expect to have to make at least some changes to their
settings.py when switching between major versions.

Minor

Minor releases, such as moving from 1.0 to 1.1, typically mean that one or more
new, large features has been added. They are also sometimes used to mark off
the fact that a lot of bug fixes or small feature modifications have occurred
since the previous minor release. (And, naturally, some of them will involve
both at the same time.)

These releases are guaranteed to be backwards-compatible with all other
releases containing the same major version number, so a settings.py that
works with 1.0 should also work fine with 1.1 or even 1.9.

Bugfix/tertiary

The third and final part of version numbers, such as the ‘3’ in 1.0.3,
generally indicate a release containing one or more bugfixes, although minor
feature modifications may (rarely) occur.

This third number is sometimes omitted for the first major or minor release in
a series, e.g. 1.2 or 2.0, and in these cases it can be considered an implicit
zero (e.g. 2.0.0).

Adding Support for New Vendors

Interested in adding support for a new vendor to Trigger? Awesome! Please see
Adding New Vendors to Trigger to get started. (Hint: It’s a work in progress!)

License

Copyright (c) 2006-2012, AOL Inc.

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the AOL Inc. nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 2013-2014, Salesforce.com

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of Salesforce.com. nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Getting Help

If you’ve scoured the Usage and API
documentation and still can’t find an answer to your question, below are
various support resources that should help. Please do at least skim the
documentation before posting tickets or mailing list questions, however!

Mailing list

The best way to get help with using Trigger is via the trigger-users mailing
list [https://groups.google.com/d/forum/trigger-users] (Google Group). We’ll
do our best to reply promptly!

Twitter

Trigger has an official Twitter account, @pytrigger [http://twitter.com/pytrigger], which is used for announcements and
occasional related news tidbits (e.g. “Hey, check out this neat article on
Trigger!”).

Email

If you don’t do Twitter or mailing lists, please feel free to drop us an email
at pytrigger@aol.com.

Bugs/ticket tracker

To file new bugs or search existing ones, please use the GitHub issue tracker, located at https://github.com/trigger/trigger/issues.

IRC

Find us on IRC at #trigger on Freenode (irc://irc.freenode.net/trigger).

Trigger is a Pacific coast operation, so your best chance of getting a
real-time response is during the weekdays, Pacific time.

Wiki

We will use GitHub’s built-in wiki located at
https://github.com/trigger/trigger/wiki.

OpenHatch

Find Trigger on Openhatch at
http://openhatch.org/projects/Trigger!

Experimental

This document describes experimental features currently in development as part of the Trigger re-architecture.

Asynchronous Endpoint Feature

NetDevice objects now contain interface methods for connect and command execution.
This is in contrast to traditional trigger whereby interaction with a given device is not re-entrant.

The following is a breakdown of these new API structures see examples/sshendpoint_updatecmdb.py at project root for more details.

Preamble

The code below defines two functions.

	StringProducer is an interface for the data that will be POST’d by the Twisted http client.

	update_cmdb is a callback function that will be fired upon the return of show version on the remote endpoint.
The purpose of this function is to POST the current IOS version into a CMDB system.

import sys
from time import sleep
from twisted.internet.defer import Deferred
from zope.interface import implements
from twisted.internet import reactor
from twisted.web.client import Agent
from twisted.web.http_headers import Headers
from twisted.internet.defer import succeed
from twisted.web.iweb import IBodyProducer
from twisted.python import log
log.startLogging(sys.stdout, setStdout=False)
from trigger.netdevices import NetDevices

Create reference to upgraded switch.
nd = NetDevices()
dev = nd.find('arista-sw1.demo.local')

Create payload body
class StringProducer(object):
 implements(IBodyProducer)

 def __init__(self, body):
 self.body = body
 self.length = len(body)

 def startProducing(self, consumer):
 consumer.write(self.body)
 return succeed(None)

 def pauseProducing(self):
 pass

 def stopProducing(self):
 pass

def update_cmdb(result, node):
 import re
 pattern = re.compile('Software image version: (4.12.0-1244667)')
 os = pattern.search(result[0]).group(1)

 agent = Agent(reactor)
 body = StringProducer("""
 {{'Devices':[
 {{Name:'{name}', OS:'{os}'}}
]}}""".format(name=node.nodeName, os=os).strip())
 d = agent.request(
 'GET',
 'http://192.168.1.194/',
 Headers({'User-Agent': ['Twisted Web Client Example'],
 'Content-Type': ['application/json']}),
 body)

 def cbResponse(ignored):
 print 'Response received'
 d.addCallback(cbResponse)

Code

Below details the code needed to actually run the command on the device and process the results asynchronously.

Open connection to device.
print "Begin example. Please wait while we extract the OS version from {name}'s show version output.".format(name=dev.nodeName)
dev.open()

Pause due to timing inconsistencies experienced in some devices.
sleep(5)

Execute some commands
r10 = dev.run_channeled_commands(['show version'])

Perform update cmdb action based on the output of arista-sw1's show version.
r10.addCallback(update_cmdb, dev)
r10.addBoth(dev.close)

We can continue to make asynchronous calls without having to restart the running process. With this in mind we could perform an action if the device
is not running on our minimum baseline version. This could be achieved like so:

Open connection to device.
print "Begin example. Please wait while we extract the OS version from {name}'s show version output.".format(name=dev.nodeName)
dev.open()

def update_device(result, node):
 import re
 pattern = re.compile('Software image version: (4.12.0)')
 os = int(pattern.search(result[0]).group(1))

 # If OS is not at baseline, copy latest code to flash
 if os < 4.12.0:
 r10.dev.run_channeled_commands(['copy tftp://192.168.1.1/my-os.code flash: /md5', 'config t', 'boot system flash:my-os.code'])

Pause due to timing inconsistencies experienced in some devices.
sleep(5)

Execute some commands
r10 = dev.run_channeled_commands(['show version'])

Perform update cmdb action based on the output of arista-sw1's show version.
r10.addCallback(update_device, dev)
r10.addBoth(dev.close)

This is a contrived example. If doing something like this in product it is recommended to take the output of the md5 hash and compare it to a pre-compiled value associated with the file sitting on the tftp server.

Changelog

1.6.0 (2017-03-08)

Enhancements

	Remote execution on devices running Cumulus Linux is now officially
supported.

	A new configuration setting DEFAULT_ADMIN_STATUS has been added
that defaults to PRODUCTION that is used to popoulate the adminStatus
field on NetDevice objects that do not have that field
populated.

	CLI-tool gnng now uses PTable instead of the old indent function.

	[Feature] #312 [https://github.com/trigger/trigger/issues/312]: Added -a/–listen-address option to the XMLRPC Server
Twisted’s default of 0.0.0.0 has been preserved, but now if you supply -a to
twistd you can have it listen on a different address.

Backwards-incompatible changes

	PyCrypto has been replaced with the cryptography [https://cryptography.io]
library.

	The default NetDevices loader is now
JSONLoader.

	ACL support is now disabled by default. This means that WITH_ACLS = False
is now the global default.

	The conf directory at the repository root containing sample
configurations has been renamed to configs to avoid confusiong with the
conf library.

Bug Fixes

	Fixed a bug in Cumulus Linux prompt patterns.

	Also disabled execution of sudo vtysh by default on Cumulus. It
will now be left up to operators to do this for themselves.
Cumulus Linux.

	Bugfixes for handling esoteric SSH server implementations.

	Bugfixes for the TextFSM parsed results bucket.

	Fixed a bug on Arista EOS devices that would sometimes cause the prompt to be
included in the results from commands with no output.

	[Bug] #313 [https://github.com/trigger/trigger/issues/313]: Use pyparsing~=2.2.0 for compat w/ setuptools>=34.0.0 which was
causing install to fail

1.5.10 (2016-04-18)

Bug Fixes

	Extended prompt detection for IOS-like devices to include interstitial space
(\s) or carriage return (\r) characters which is sometimes seen on
Arista EOS devices, and would cause asynchronous execution to sometimes hang
and result in a CommandTimeout error.

	[Bug] #269 [https://github.com/trigger/trigger/issues/269]: - Bugfix in bin/load_acl that prevents queue.complete()
from being called when using the --no-db flag. Previously, an
AttributeError attribute error was raised due to attempting to call
complete on queue, which is set to None when passing
--no-db.

	[Bug] #266 [https://github.com/trigger/trigger/issues/266]: - Cleaned up network.utils.ping, removed hostname validation code

	[Bug] #271 [https://github.com/trigger/trigger/issues/271]: - Bugfix in ping() where a file
descriptor wasn’t closed cleanly.

	[Bug] #167 [https://github.com/trigger/trigger/issues/167]: - Bugfix in bin/gnng that printed device names before any
tables, resulting in potentially confusing results. Devices names are now
printed with the corresponding table.

	[Bug] #257 [https://github.com/trigger/trigger/issues/257]: - Bugfix in bin/gnng that allows the --filter-on-type
to function as expected.

	Update documentation of gnng’s -N/--nonprod flag.

	[Bug] #89 [https://github.com/trigger/trigger/issues/89]: - Bugfix in bin/gnng that allows gnng to fail gracefully
when a device isn’t found.

	Bugfix in bin/gnng --all that was causing many device vendors to be
skipped entirely because the filter was too specific. This vendor filter has
been removed and will now fallback to NetACLInfo() internal
knowledge of supported platforms.

1.5.9 (2016-04-01)

Bug Fixes

	[Bug] #258 [https://github.com/trigger/trigger/issues/258]: - Bugfix in gorc where init commands would be sent
before a prompt was even available on the remote device.

	[Bug] #259 [https://github.com/trigger/trigger/issues/259]: - Bugfix in pretty_time() where pytz was
being referenced but not imported.

	Extended prompt detection for IOS-like devices to include backspace
characters (\b or \x08) which is sometimes seen on Cisco NX-OS
devices, and would cause asynchronous execution to sometimes hang and result
in a CommandTimeout error.

	Improved the internal grouping logic for load_acl to be more
permissive and if grouping fails it will just not group devices.

	Fixed a bug that would prevent ACL staging from working when using
default global settings.

	Fixed bugs in the default global callables for get_current_oncall()
and create_tm_ticket() that would prevent lod_acl from working.
They now default to a disabled state that does not require
customization just to utilize core load_acl functionality.

	Updated the sample settings.py (configs/trigger_settings.py) to
utilize the updated default callables.

	Fixed a bug in default global callable for get_tftp_source() to
properly perform lookup of VIPS

	Fixed a bug in default global callable for stage_acls() to
properly perform lookup of FIREWALL_DIR and
TFTPROOT_DIR.

1.5.8 (2016-03-08)

Bug Fixes

	[Bug] #252 [https://github.com/trigger/trigger/issues/252]: - Bugfix in Commando related to the addition of
TextFSM support for parsing unstructured CLI output.

1.5.7 (2016-02-18)

Enhancements

	Added TextFSM parser to process unstructured CLI output.

	Added a new prompt pattern to settings.CONTINUE_PROMPTS.

	New continue prompts no longer need to be lower-cased.

	Clarified the error text when an enable password is required but not provided
when connecting to a device to make it a little more clear on how to proceed.

Bug Fixes

	Bugfix in config_device causing an
unhandled NameError.

	[Bug] #250 [https://github.com/trigger/trigger/issues/250]: Bugfix in bin/gnng that would cause a crash when using
--sqldb or --csv output flags.

1.5.6 (2016-02-16)

Bug Fixes

	[Bug] #153 [https://github.com/trigger/trigger/issues/153]: Added -f/--force-cli to run_cmds to allow CLI execution
on Juniper devices or any vendor platform where API support is enabled
by default, fixing an underlying bug where CLI output would result in a
crash.

	[Bug] #193 [https://github.com/trigger/trigger/issues/193]: Multiple commands can now be sent to Juniper devices w/
run_cmds.

	Updated the Juniper CLI prompt pattern to work when a hostname isn’t set
that would result in a CommandTimeout causing execution to fail.

1.5.5 (2016-02-04)

Bug Fixes

	Bugfix in match() where keyword arguments
were not properly filtering out devices that matched, sometimes resulting in
a confusing union of matching devices.

1.5.4 (2016-01-29)

Bug Fixes

	Bugfix when using match() to lookup devices
by attribute/value, which will no longer result in a KeyError if any device
is missing the desired attribute. This means that besides the minimum
required attributes, NetDevice objects:

	Are no longer required to have uniform attributes;

	If an attribute does it exist it may have a value of None.

1.5.3 (2016-01-19)

New Features

	Remote execution on Avocent console servers is now officially supported.

	Example normalizer [https://github.com/trigger/trigger/tree/develop/examples/normalizer]
project added to the examples directory at the root of the repository.

Enhancements

	An identity test for NetDevice objects has been added
that can be used to check whether a devices is a Cisco Nexus. You may utilize
it by calling is_cisco_nexus() on any NetDevice object.

	Support for parsing interfaces on Cisco Nexus devices has been added.

	A new global setting now defines what to do when a device object does not
have a manufacturer defined (See: FALLBACK_MANUFACTURER) which
defaults to the value UNKNOWN.

	[Feature] #212 [https://github.com/trigger/trigger/issues/212]: The twister module is now PEP8-compliant.

Bug Fixes

	Fixed a bug where devices w/ mixed case names aren’t properly detected by
Commando subclasses, since
NetDevices normalizes the hostname on load.

	[Bug] #236 [https://github.com/trigger/trigger/issues/236]: Fixed a bug in changemgmt so that Trigger can use the
current version of pytz.

	[Bug] #238 [https://github.com/trigger/trigger/issues/238]: Fixed a bug where sending an enable password to a device in a low
latency environment (sub 1 ms) would result in the password being sent before
the password prompt is displayed by the device.

	[Bug] #241 [https://github.com/trigger/trigger/issues/241]: Pin Twisted version to 15.4.0 so that py2.6 unit tests succeed.
(Twisted 15.5.0 dropped support for Python 2.6)

1.5.2

New Features

	NetDevices can now be properly subclassed and extended.

	A disable paging command has been added for Citrix NetScaler devices.

	String patterns used for detecting continue prompts is now globally
configurable. (See CONTINUE_PROMPTS)

Bug Fixes

	[Bug] #210 [https://github.com/trigger/trigger/issues/210]: Addressed an issue where the buffer storing results from a command
was not properly cleared when output continued to be sent after the prompt
was displayed.

	bin/run_cmds will now no longer hide errors when in --verbose mode.

1.5.1

New Features

	The SSH authentication order is now a configurable setting. Public key is now
the last method by default, but this is now easily configured in
settings.py using the new SSH_AUTHENTICATION_ORDER setting.

	The command_interval argument may now be passed to
Commando and its subclasses. This allows you to specify a
delay time in seconds to wait between sending commands to devices.

Enhancements

	The example script the Trigger XMLRPC service has been improved to check the
pid file and kill the existing twistd process by process id.

1.5

Warning

This release has introduced a change the Commando.parse() method that
WILL require a minor change to any subclasses of Commando in your
applications.

You will need to modify any custom from_{vendor} methods to take an
optional commands argument. It is recommended that you add
commands=None.

Bug Fixes

	[Bug] #168 [https://github.com/trigger/trigger/issues/168]: Fixed a bug in parse() where None was listed as
the command in results causing result data to be lost.

1.4.9

New Features

	Support for Pica8 routers and switches has been added!

	[Feature] #135 [https://github.com/trigger/trigger/issues/135]: Support for SSH public key authentication has been added!

	An ehancement to select_next_device() to support
skipping a NetDevice object for selection. If you
overload this method in a subclass and want to skip the device, just return
None!

1.4.8

New Features

	Cisco ASA firewall now supported as a NetDevice. To begin using, ensure
that FIREWALL is added in your settings.py as a supported cisco platform.o

For it to enable properly, either the netdevice attribute enablePW needs
to be set or the environment variable TRIGGER_ENABLEPW does. For now, I
typically accomplish this via:

>>> from trigger.conf import settings
>>> from trigger import tacacsrc
>>> settings.DEFAULT_REALM = 'MyRealm'
>>> os.environ['TRIGGER_ENABLEPW'] = \
 tacacsrc.get_device_password(settings.DEFAULT_REALM).password
>>> # Then the rest of my program

ACL parsing for ASA is not implemented yet. NetACLInfo will generate the
proper command, but will currently just add a message warning about future
support

1.4.7

New Features

	The .tacacsrc passphrase may now be stored in settings.py.

Bug Fixes

	[Bug] #144 [https://github.com/trigger/trigger/issues/144]: Bugfix to detect missing or empty .tacacsrc keyfile.

Bug Fixes

1.4.6

Bug Fixes

	[Bug] #198 [https://github.com/trigger/trigger/issues/198]: Fix hanging SSH connections to Cisco equipment due to client
sending key exchange messages before remote device.

1.4.5

New Features

	There is now a MongoDB loader for NetDevices.

	[Feature] #140 [https://github.com/trigger/trigger/issues/140]: There is a new ReactorlessCommando that allows
for running multiple Commando instances in the same program
under the same reactor by preventing the instances from doing it themselves.

	[Feature] #182 [https://github.com/trigger/trigger/issues/182]: bin/run_cmds will now log all activity to a logfile in /tmp

	[Feature] #195 [https://github.com/trigger/trigger/issues/195]: The acl library has been refactored to be more
modular, breaking out vendor-specific grammar details into their own modules
(ios, junos).

Documentation

	Improved the documentation for Managing Credentials with .tacacsrc.

	The Installation page now includes instructions for using
bounce.py to configure maintenance windows.

Bug Fixes

	Make sure Juniper SRX devices are not categorized as being NetScreen devices

	Bugfix in is_netscreen() to account for when
.make is None

	Minor bugfix in start_xmlrpc.sh example script

1.4.4

Enhancements

	Client connectings (such as those made by bin/load_acl, for example)
will now raise an error when it is detected that an enable password is
required and one is not provided.

	[Feature] #181 [https://github.com/trigger/trigger/issues/181]: Added SSH support for confirmation prompts

	Added '[confirm]' as one of those prompts

Bug Fixes

	[Bug] #172 [https://github.com/trigger/trigger/issues/172]: Added ability to specify remote port for NetDevice objects

	Add defaults in settings.py for SSH (SSH_PORT) and Telnet (SSH_TELNET)
ports

	Added documentation for SSH_PORT and TELNET_PORT in settings.py

	[Bug] #180 [https://github.com/trigger/trigger/issues/180]: Fix prompt patterns to include optional space and hard
line-endings.

	[Bug] #184 [https://github.com/trigger/trigger/issues/184]: Pin pytz<=2014.2 to fix unit tests for time being (no pun
intended).

	Fix a minor bug causing bin/gong send the enable password when it
shouldn’t.

	Bugfix when passwords are passed in to make sure they are not unicode

	bin/gong will now mark a device as enabled when auto-enable is detected.

1.4.3

New Features

	Added a new bin/check_syntax tool to determine if an ACL passes a
syntax check.

	Acceptance tests can now be run standalone from within a clone of the
Trigger repo.

	[Feature] #142 [https://github.com/trigger/trigger/issues/142]: bin/gong now enables on login if the enable
password is provided by way of TRIGGER_ENABLEPW.

Enhancements

	Improvements to user-experience within bin/acl

	Help text greatly improved and expanded to be more helpful

	-l and -m args now print a message when load queue is
empty

	Clarified help text for -a and -r args

	It now requires users to explicitly ask for associations
instead of it being default.

	The wording on the status output has been improved for clarity
and conciseness.

	bin/load_acl will now validate .tacacsrc before work begins

Bug Fixes

	Bugfix in Tacacsrc in which saving a password
longer than a certain length could cause the encrypted password hash
to contain newlines and therefore become unreadable.

	[Bug] #163 [https://github.com/trigger/trigger/issues/163]: Bugfix to copy startup commands from a device when creating
a channel base, otherwise they will get consumed directly from the
device, and connections after the first will not send any startup
commands.

	[Bug] #157 [https://github.com/trigger/trigger/issues/157]: Bugfix in which
TriggerTelnetClientFactory was missing the
device attribute.

	Fix a bug causing a crash when using gnng --dotty

	Bugfix in pty_connect() to check for telnet
fallback before attempting to telnet over pty that would cause a race
condition resulting in a crash if neither telnet or SSH are available.

	Catch invalid hostnames before they bleed through in stderr output
when using ping

	Bugfix to catch exceptions for bad netdevices data in bin/netdev.

	Fix bugs in auto-enable and remote execution on certain devices

	The correct delimiter is now mapped out by vendor/platform and
attached to the NetDevice object at runtime.

	Fixed a bug when executing commands remotely on NetScreen
devices running ScreenOS that was causing them to be treated
as Juniper routers/switches if the NetDevice attributes
vendor=juniper and deviceType=netscreen.

	[Bug] #151 [https://github.com/trigger/trigger/issues/151]: Gong now uses chosen dev. from multiple when updating
.tacacsrc.

	[Bug] #90 [https://github.com/trigger/trigger/issues/90]: Bugfix causing
CSVLoader for netdevices to
always succeed.

1.4.2

Warnings

	With this update, load_acl and acl no longer assume ACL and filter files
begin with ‘acl.’. There are two options for updating your deployment to
work with this code:

	Move files in settings.FIREWALL_DIR to files without the prepended ‘acl.’.

	Update autoacls.py and explicit ACL associations to include the prepended
‘acl.’ prepend_acl_dot was included in tools/ to help update explicit ACL
associations.

	Please note that either change above may have an impact on any non-trigger code.

New Features

	ACL staging and finding tftp server moved to global settings

	Allows for more site specific configuration

	Load_acl support for new vendors

	Force10

	Enhancements to various ACL-related CLI tools

	Moved staging and tftp server definitions to global settings
to allow for site specific configuratons

	Added tftpy package to trigger.packages.tftpy (MIT License)

Bug Fixes

	Helpful netdev output when no devices found from search

	[Bug] #100 [https://github.com/trigger/trigger/issues/100]: Bug fix to add acl parser support for then accept;

	[Bug] #132 [https://github.com/trigger/trigger/issues/132]: Bugfix to handle inactive IP addresses in acl parser

	[Bug] #133 [https://github.com/trigger/trigger/issues/133]: Bugfix to added interface-specific support for Juniper filters

1.4.1

New Features

	Support for new vendors and platforms!!

	F5 BIG-IP application delivery controllers and server load-balancers

	MRV LX-series console servers

	New tool bin/run_cmds to run commands from the CLI!

Documentation Enhancements

	API documentation fixes for trigger.contrib and some logging
fixes

Bug Fixes

	[Bug] #97 [https://github.com/trigger/trigger/issues/97]: Bugfix that was causing NameError crash in
bin/optimizer.

	[Bug] #124 [https://github.com/trigger/trigger/issues/124]: Bugfix in pretty_time where
global timezone was hard-coded.

	[Bug] #127 [https://github.com/trigger/trigger/issues/127]: Bugfix to handle SSH protocol errors as if they are
login failures instead of exiting with a cryptic error.

	Bugfix in Tacacsrc when updating credentials for a user.

	Tacacsrc will now truly enforce file permissions on the
.tacacsrc when reading or writing the file

1.4

Trigger has a new home at https://github.com/trigger/trigger!

New Features

	Support for new vendors and platforms!!

	Aruba wireless controllers

	Cisco Nexus switches running NX-OS

	Force10 routers and switches

	Trigger now has a contrib package for optional extensions
to core Trigger features.

	A pluggable XMLRPC server that can be
used as a long-running event loop.

	Plugins for use w/ the XMLRPC server

	Task queue now supports MySQL, PostgreSQL, or SQLite.
See the Database settings for more information!

	There’s a new DATABASE_ENGINE that allows you to specify.

	New tool to initialize your database w/ ease: init_task_db

	All legacy unit tests have been fixed and Trigger is now fully
integrated with Travis CI [http://traviw-ci.org]. All new
functionality will be fully tested, and the existing unit testing
suite will be continually improved.

	You may now globally disable ACL support by toggling
WITH_ACLS in settings.py.

	All execute() methods and Commando
objects now support a with_acls argument to toggle this at runtime.

	We also turned off ACLs for scripts that will never use them.

	All execute() methods and Commando objects
now support a force_cli argument to force commands to be sent as CLI
commands and return human-readable output instead of structured output.
Currently this is only relevant for Juniper devices, which return XML by
default.

	[Feature] #54 [https://github.com/trigger/trigger/issues/54]: Commands allowed in .gorc can now be customized in
settings.py (See GORC_ALLOWED_COMMANDS for more
information)

	Vastly expanded debug logging to include device hostname whenever
possible. (You’re welcome!)

Bug fixes

	Fix AttributeError when trying to connect interactively causing
logins to fail.

	[Bug] #74 [https://github.com/trigger/trigger/issues/74]: - Bugfix in error-detection for NetScaler devices

	Bugfix in host lookup bug in TriggerTelnet
causing telnet channels to crash.

	Fix typo that was causing Cisco ACL parsing to generate an unhandled
exception.

	Fix typos in tools/tacacsrc2gpg.py that were causing it to
crash.

	[Bug] #119 [https://github.com/trigger/trigger/issues/119]: - Get custom importlib from trigger.utils vs. native (for
supporting Python < 2.6).

	Replace all calls to os.getlogin() causing “Invalid argument”
during unit tests where the value $USER is not set.

	Various bugfixes and improvements to the handling of async SSH
execution.

	[Bug] #33 [https://github.com/trigger/trigger/issues/33]: Console paging is now disabled by default for SSH
Channels.

	[Bug] #49 [https://github.com/trigger/trigger/issues/49]: Bugfix in ACL parser to omit src/dst ports if
range is 0-65535.

	Bugfix in ACL parser showing useless error when address fails to parse

	Bugfix in RangeList objects causing numeric
collapsing/expanding to fail

	Bugfix in Commando causing results from multiple Commando
instances to collide with each other because they were inheriting an empty
dictionary from the class object.

CLI Tools

	bin/gnng - Added flags to include un-numbered (-u) or disabled (-d)
interfaces.

trigger.acl

	Minimal changes to support writing Dell ACLs

	Parser modifications to support negation of address objects in Junos
ACLs. (Note that this relies on marking up ACLs with ‘trigger: make
discard’ in term comments. This is undocmented functionality,
currently used internally within AOL, and this code will only be
used for Junos output.)

	[Feature] #47 [https://github.com/trigger/trigger/issues/47]: Add parsing of ranges for fragment-offset in Juniper ACLs

trigger.changemgmt

	Refactored BounceWindow definition syntax to be
truly usable by humans.

trigger.cmds

	NetACLInfo and bin/gnng can now include disabled
or un-addressed interfaces in their results.

	Added pyparsing as a hard requirement until further notice so that
NetACLInfo and bin/gnng will behave as expected
without confusing developers and users alike.

	You may now pass login credentials to Commando using the
creds argument.

trigger.netdevices

	Prompt patterns are now bound to Vendor
objects.

trigger.tacacsrc

	Added a utility function validate_credentials() to …
validate credentials … and return a Credentials object.

trigger.twister

	The new default operating mode for SSH channels is to use shell +
pty emulation.

	[Feature] #56 [https://github.com/trigger/trigger/issues/56]: You may now optionally run “commit full” on Juniper
devices. (See JUNIPER_FULL_COMMIT_FIELDS for more
information)

	Added support for sending an enable password to IOS-like devices
when an enable prompt is detected.

	This can either be provided in your netdevices metadata by
populating the enablePW attribute, or by setting the
environment variable TRIGGER_ENABLEPW to the value of the
enable password.

	Added error-detection for Brocade MLX routers.

	Tacacrc() is now only called once when creds aren’t
provided upon creation of new clients.

trigger.utils

	New utility module xmltodict for convert XML into
dictionaries, primarily so such objects can be serialized into JSON.

1.3.1

	General changes

	New contrib package for optional extensions to core Trigger
features, CommandoApplication being
the first.

	Remove legacy mtsync check from bin/fe.

	Conditionally import MySQLdb so we can still do testing without
it.

	The following changes have been madw within parser,
which provides Trigger’s support for parsing network access control
lists (ACLs) and firewall policies:

	[Bug] #72 [https://github.com/trigger/trigger/issues/72]: Bugfix in TIP where an invalid
network preifx (e.g. ‘1.2.3.1/31’ would throw an
AttributeError when checking the negated attribute and
shadowing the original ValueError.

	The following changes have been made within cmds, which
provides an extensible, developer-friendly interface to writing
command exeuction adapters:

	Added with_errors argument to Commando
constructor to toggle whether errors are raised as exceptions or
returned as strings.

	Allow timeout to be set as a class variable in
Commando subclasses, preferrring timeout passed to
constructor in Commando subclasses.

	The following changes have been made within netdevices:

	Refactor how we id Brocade switches for startup/commit (fix #75)

	It’s assumed that all Brocade devices all act the same;

	Except in the case of the VDX, which is treated specially.

	Simplified how startup_commands are calculated

	Disable SQLite loader if sqlite3 isn’t available for some reason.

	Prompt patterns are now bound to Vendor
objects object when NetDevices is populated.

	Vendor objects now have a prompt_pattern
attribute.

	All prompt patterns are now defined in settings.py:

	Vendor-specific: PROMPT_PATTERNS

	IOS-like: IOSLIKE_PROMPT_PAT

	Fallback: DEFAULT_PROMPT_PAT

	The following changes have been made within twister,
which provides Trigger’s remote execution functionality:

	Added CLI support for Palo Alto Networks firewalls!

	SSH Async now enabled by default for Arista, Brocade.

	[Feature] #54 [https://github.com/trigger/trigger/issues/54]: Moved static definition of commands permitted to be
executed when specified in a users’ ~/.gorc file into a new
configuration setting GORC_ALLOWED_COMMANDS. The file
location may now also be customized using GORC_FILE.

	[Bug] #68 [https://github.com/trigger/trigger/issues/68]: Fix host lookup bug in TriggerTelnet
causing telnet channels to crash.

	[Bug] #74 [https://github.com/trigger/trigger/issues/74]: Fix error-detection for NetScaler devices.

	Enhanced logging within twister to include the device
name where applicable and useful (such as in SSH channel
debugging).

	All execute_ functions have been simplified to eliminate
hard-coding of vendor checking wherever possible.

	Beginnings of reworking of Generic vs. AsyncPTY SSH channels:

	Most vendors support async/pty with little problems.

	This will become the new default.

	New execute helper: execute_async_pty_ssh

	New error helper: has_juniper_error

	Arista now uses execute_async_pty_ssh

	A NetScalerCommandFailure will now just be a
CommandFailure

	Documentation

	Updated README to callout CSV support.

	Updated README to reflect branching model.

	Updated supported vendors, and no longer promising NETCONF
support.

1.3.0

Warning

If you are upgrading from Trigger Before Upgrading from Trigger 1.2 or
earlier, please heed these steps!

	Add NETDEVICES_SOURCE = NETDEVICES_FILE to your settings.py. This
variable has replaced NETDEVICES_FILE.

	Create your Bounce window mappings in bounce.py and put it in
/etc/trigger/bounce.py. See configs/bounce.py in the source
distribution for an example.

	General changes

	All references to psyco have been removed as it doesn’t support 64-bit and
was causing problems in Python 2.7.3.

	A new document, Adding New Vendors to Trigger, has been added to use as checklist for
adding new vendor support to Trigger.

	Added Allan Feid [https://github.com/crazed] as contributor for his
crazed ideas.

	[Feature] #10 [https://github.com/trigger/trigger/issues/10]: The following changes have been made within
changemgmt, which provides Trigger’s support for bounce windows
and timezones, to move the bounce window settings into configurable data vs.
static in the module code.

	This module has been convertd into a package.

	The Bounce window API has been totally overhauled. Bounce windows are no
longer hard-coded in changemgmt and are now configured using
bounce.py and specified using BOUNCE_FILE. The interface for
creating BounceWindow objects was greatly simplified
to improve readability and usage.

	Added sample bounce.py to configs/bounce.py in the Trigger source
distribution.

	New setting variables in settings.py:

	BOUNCE_FILE - The location of the bounce window mapping
definitions. Defaults to /etc/trigger/bounce.py.

	BOUNCE_DEFAULT_TZ - Default timezone for bounce windows.
Defaults to 'US/Eastern'.

	BOUNCE_DEFAULT_COLOR - The default bounce risk-level status
color. Defaults to 'red'.

	[Feature] #55 [https://github.com/trigger/trigger/issues/55]: The following changes have been made within
netdevices to make it easier to populate
NetDevices from arbitrary sources by implementing
pluggable loaders.

	This module has been converted into a package.

	All hard-coded metadata parsing functions and associated imports have been
replaced with loader plugin classes. Filesystem loaders provided by default
for JSON, XML, Sqlite, Rancid, and new: CSV!). The bare minimum config for
CSV is a newline-separated CSV file populated with “hostname,vendor”

	New configuration setting: NETDEVICES_LOADERS used to define a
list of custom loader classes to try in turn. The first one to return data
wins.

	The configuration settings SUPPORTED_FORMATS and
NETDEVICES_FORMAT have been deprecated.

	The configuration setting NETDEVICES_SOURCE has replaced
NETDEVICES_FILE.

	The sample settings.py (found at configs/trigger_settings.py in the
source distribution) illustrates how one may use
NETDEVICES_SOURCE and NETDEVICES_LOADERS to replace
the deprecated settings NETDEVICES_FORMAT and
NETDEVICES_FILE.

	The following changes have been made within twister, which
provides Trigger’s remote execution functionality:

	[Feature] #22 [https://github.com/trigger/trigger/issues/22]: Added Aruba wireless controller and Brocade ADX/VDX support
for execute/pty in trigger.twister and any device that requires pty-req and
shell without actualling using a pty. The channel class for this
functionality is called TriggerSSHAsyncPtyChannel

	Added a new requires_async_pty attribute to
NetDevice objects to help identify devices that
require such channels.

	Added a force_cli flag to execute() to force CLI
execution on Juniper devices instead of Junoscript.

	The default client factory (TriggerClientFactory) now
calls validate_credentials() instead of directly
instantiating Tacacsrc anytime credentials are
populated automatically, resulting in only a single call to
Tacacsrc(), when creds aren’t provided.

	Added error-detection for Brocade MLX devices.

	The following changes have been made within cmds, which provides
an extensible, developer-friendly interface to writing command exeuction
adapters:

	Added a force_cli flag to Commando constructor to force
CLI execution on Juniper devices instead of Junoscript.

	The timeout value may now be set as a class variable in
Commando subclasses.

	Commando now steps through commands as iterables instead
of assuming they are lists. The iterable is also now explicitly cast to a
list when we need it be one.

	A minor bugfix in Commando causing results from multiple
Commando instances to collide with each other because they were inheriting
an empty results {} from the class object.

	Commando now accepts creds as an optional argument. If
not set, it will default to reading user credentials from .tacacsrc.

	The following changes have been madw within parser, which
provides Trigger’s support for parsing network access control lists (ACLs)
and firewall policies.

	[Feature] #12 [https://github.com/trigger/trigger/issues/12]: Support has been added for parsing IPv6 addresses in Juniper
firewall filters. (This does not include full IPv6 firewall support!)

	[Bug] #26 [https://github.com/trigger/trigger/issues/26]: The ACL parers was modified to support negation of addresses
using the syntax {ip} except; in Juniper firewall filters. To
facilitate this a custom IP address class was created:
TIP (which is a subclass of IPy.IP).

	The prefix on /32 and /128 IPs in Juniper ACLs is now always displayed.

	The following changes have been made within tacacsrc, which
provides functionality to cache and retrieve user credentials:

	Added a new function validate_credentials() to (you
guessed it!) validate credentials. It supports input in the form 2-tuples
(username, password), 3-tuples (username, password, realm), and
dictionaries of the same and returns a Credentials
object.

	The following changes have been made to Trigger’s command-line utilities:

	[Feature] #60 [https://github.com/trigger/trigger/issues/60]: bin/load_acl will now shutdown gracefully if initial
the MySQL connection fails, using a try..except to display some
information about the connection failure without a traceback. For other
MySQL issues, we will leave as is (dumping the traceback) because they
would represent coding or transient issues, and we should present as much
information as we have.

	[Feature] #20 [https://github.com/trigger/trigger/issues/20]: bin/gnng (get_nets) In support of displaying Juniper
‘sp’ interfaces (which are un-numbered and were being skipped for this
reason), we’ve added flags to include un-numbered (-u) or disabled
(-d) interfaces for any device platform.

1.2.4

	The commands required to commit/save the configuration on a device are now
attached to NetDevice objects under the
commit_commands attribute, to make it easier
to execute these commands without having to determine them for yourself.

	[Feature] #56 [https://github.com/trigger/trigger/issues/56]: Added a way to optionally perform a commit full operation
on Juniper devices by defining a dictionary of attributes and values for
matching devices using JUNIPER_FULL_COMMIT_FIELDS. This modifies
the commit_commands that are assigned when the
NetDevice object is created.

	[Bug] #33 [https://github.com/trigger/trigger/issues/33]: Console paging is now disabled by default for async SSH channels.

1.2.3

	[Feature] #47 [https://github.com/trigger/trigger/issues/47]: Added parsing of ranges for fragment-offset statements in
Juniper ACLs.

	[Bug] #49 [https://github.com/trigger/trigger/issues/49]: Changed ACL parser to omit src/dst ports if port range is
0-65535.

	[Bug] #50 [https://github.com/trigger/trigger/issues/50]: Fix typo that was causing Cisco parsing to generate an unhandled
exception within NetACLInfo.

	Minor bugfix when checking device names and printing a warning within
Commando.

	Updated docs to say we’re using a interactive Python interpreter and added
OpenHatch profile to contact info.

1.2.2

	[Feature] #16 [https://github.com/trigger/trigger/issues/16]: Arista support was added to bin/load_acl

	[Bug] #45 [https://github.com/trigger/trigger/issues/45]: Added “SSH-1.99” as a valid SSHv2 version in
test_ssh() to fix a bug in which devices presenting
this banner were errantly falling back to telnet and causing weird behavior
during interactive sessions.

	[Feature] #46 [https://github.com/trigger/trigger/issues/46]: Changed connect() to pass the vendor name to
get_init_commands() so that it is more explicit when
debugging.

	[Feature] #29 [https://github.com/trigger/trigger/issues/29]: Added an extensible event notification system

	A new pluggable notification system has been added in
notifications, which defaults to email notifications.
New event handlers and event types can be easily added and specified
with the configuration using NOTIFICATION_HANDLERS.

	The following changes have been made to bin/load_acl:

	All alerts are now using the new notification system

	email_users() moved to send_email()

	All calls to send failures now call
send_notification()

	All calls to send successes now calls
send_email()

	In support of the new notification system, the following config
settings have been added:

	EMAIL_SENDER - The default email sender

	NOTIFICATION_SENDER - The default notification sender

	SUCCESS_RECIPIENTS - Hosts/addresses to send successes

	FAILURE_RECIPIENTS - Hosts/addresses to send failures

	NOTIFICATION_HANDLERS - A list of handler functions to
process in order

	A new utility module has been added to import modules in
importlib, and trigger.conf.import_path() was moved to
import_module_from_path() to bring these import
tools under one roof.

1.2.1

	[Bug] #30 [https://github.com/trigger/trigger/issues/30]: Bugfix in bin/acl where tftproot was hard-coded. It now reads
from TFTPROOT_DIR.

	[Feature] #37 [https://github.com/trigger/trigger/issues/37]: Fixed misleading “make discard” output from
bin/check_access, to use the Term.extra attribute to store a
user-friendly comment to make it clear that the term’s action has been
modified by the “make discard” keyword.

	[Feature] #39 [https://github.com/trigger/trigger/issues/39]: Call create_cm_ticket() in a try..commit block so it
can’t crash bin/load_acl.

	[Bug] #40 [https://github.com/trigger/trigger/issues/40]: Update dot_gorc.example with [init_commands].

	[Bug] #43 [https://github.com/trigger/trigger/issues/43]: Bugfix in bin/acl to address incorrect exception reference from
when exceptions were cleaned up in release 1.2.

	Simplified basic Commando example in docs/index.rst.

	Simplified activity output in Commando base to/from methods

	Replaced all calls to time.sleep() with reactor.callLater() within
twister support of the command_interval argument to Twisted
state machine constructors.

	Added a way to do SSH version detection within network

	Enhanced test_tcp_port() to support optional
check_result and expected_result arguments. If check_result is
set, the first line of output is retreived from the connection and the
starting characters must match expected_result.

	Added a test_ssh() function to shortcut to check
port 22 for a banner. Defaults to SSHv2.

	SSH auto-detection in NetDevices objects now uses
test_ssh().

	Added a new crypt_md5() password-hashing function.

	Added proper argument signature to get_netdevices.

	Updated misnamed BadPolicerNameError to BadPolicerName

	More and better documentation improvements, including new documentation for
bin/acl_script.

1.2

	[Feature] #23 [https://github.com/trigger/trigger/issues/23]: Commando API overhauled and support added for RANCID

	RANCID is now officially supported as a source for network device
metadata. A new RANCID compatibility module has been added at
rancid, with support for either single or multiple instance
configurations. Multiple instances support can be toggled by setting
RANCID_RECURSE_SUBDIRS to True.

	The following changes have been made to netdevices:

	NetDevices can now import from RANCID

	A new Vendor type has been added to
netdevices to store canonical vendor names as determined by
the new setting VENDOR_MAP.

	When NetDevice objects are created, the manufacturer
attribute is mapped to a dynamic vendor attribute. This is intended to
normalize the way that Trigger identifies vendors internally by a single
lower-cased word.

	All NetDevice objects now have a vendor
attribute with their canonical Vendor object
attached to it.

	If the deviceType attribute is not set, it is determined
automatically based on the vendor attribute. The default types for
each vendor can be customized using DEFAULT_TYPES. If a vendor
is not specified witihin DEFAULT_TYPES,
FALLBACK_TYPE. will be used.

	All logical comparisons that onced used the hard-coded value of the
manufacturer attribute of a device now instead compare against the
vendor attribute.

	You may now tell NetDevices not to fetch acls from AclsDB when
instantiate you may also do the same for individual NetDevice objects
that you manually create

	The following changes have been made to cmds:

	The Commando class been completely redesigned to reduce
boilerplate and simplify creation of new command adapters. This is
leveraging the changes to NetDevice objects, where
the vendor name can be expected to always be normalized to a single,
lower-cased word. Defining commands to send to devices is as simple as
definiing a to_{vendor} method, and parsing return results as simple
as from_{vendor}.

	All dynamic method lookups are using the normalized vendor name (e.g.
cisco, juniper).

	Base parse/generate lookup can be disabled explicitly in
Commando subclasses or as an argument to the constructor.

	NetACLInfo adapted to use Commando 2.0

	The following changes have been made to Trigger’s exception handling

	All exceptions moved to exceptions and given docstrings

	trigger.acl.exceptions has been removed

	All calls to exceptions updated to new-style exceptions

	A new -v option has been added to bin/netdev to support vendor lookups

	[Feature] #4 [https://github.com/trigger/trigger/issues/4]: Support for SSH auto-detection and pty/async improvements:

	The following changes have been made to twister:

	Detection of remotely closed SSH connections so bin/gong users can be
properly notified (e.g. ssh_exchange_identification errors)

	New execute function to automatically choose the best
execute_ function for a given NetDevice object,
and is now attached to all NetDevice objects

	execute_ioslike now determines whether to use SSH or
Telnet automatically

	All pty connection logic moved out of bin/gong into
twister and is exposed as the connect
function and also attached to all NetDevice objects

	Interactive sessions may now be optionally logged to a file-like object by
passing the log_to argument to the Interactor
constructor

	execute_junoscript now using
execute_generic_ssh

	Command interval added to Junoscript channels for consistency

	Global NetDevices import removed from twister;
moved to only occur when a telnet channel is created

	The following changes have been made to netdevices:

	All NetDevice objects now have a
execute method to perform async interaction

	The connect function is now automatically attached to
every NetDevice object; to get a pty it’s as simple
as dev.connect().

	New helper methods added to NetDevice objects:

	SSH functionality methods: has_ssh()
(port connection test), can_ssh_async()
(device supports async), can_ssh_pty()
(device supports pty)

	is_ioslike() to test if a device is
IOS-like as specified by IOSLIKE_VENDORS.

	is_netscreen to test if a device is a
NetScreen firewall

	is_reachable to test if a device
responds to a ping

	The following changes have been made to settings:

	A mapping of officially supported platforms has been defined at
SUPPORTED_PLATFORMS

	VALID_VENDORS has been renamed to SUPPORTED_VENDORS

	A mapping of officially supported device types has been defined at
SUPPORTED_TYPES

	You may now disable telnet fallback by toggling TELNET_ENABLED

	You may now disable SSH for pty or async by vendor/type using
SSH_PTY_DISABLED and SSH_ASYNC_DISABLED
respectively

	SSH_TYPES has been removed as it is no longer needed

	Commando experimentally using the new
NetDevice.execute() method

	Two new helper functions added to cli:
setup_tty_for_pty and
update_password_and_reconnect, which modularize
functionality that was in bin/gong that didn’t seem to fit anywhere else

	[Feature] #21 [https://github.com/trigger/trigger/issues/21]: The following changes have been made to support A10 hardware
and to enhance handling of SSH channels:

	Added a new generic SSH channel. The NetScreen and A10 channels are based
from this. Further abstraction needed to roll NetScaler channel into this
as well.

	Added a new execute_generic_ssh factory function.

	Refactored execute_netscreen to use execute_generic_ssh

	Added a new execute_ioslike_ssh factory function
utilizing the generic SSH channel to support SSH on IOS-like devices
(Brocade, Cisco, Arista, A10, etc.). Works like a charm except for the
Brocade VDX.

	The Commando was updated to support A10, NetScreen. Brocade,
Arista changed to use SSH vs. telnet.

	All prompt-matching patterns moved to top of trigger.twister as constants

	A10 added to IOSLIKE_VENDORS

	[Feature] #24 [https://github.com/trigger/trigger/issues/24]: bin/gong will now display the reason when it fails to
connect to a device.

1.1

	All changes from release 1.0.0.100 (oh hey, duh) are officially part of this
release

	[Bug] #9 [https://github.com/trigger/trigger/issues/9]: Fixed missing imports from bin/acl_script and removed a bunch of
duplicated code already within the Trigger libs.

	Added new keywords to setup.py

	Some new utilities added to tools for merging new access into
an existing ACL object

	[Feature] #17 [https://github.com/trigger/trigger/issues/17]: RangeList now sorts port range tuples
when parsing access-lists.

	[Bug] #8 [https://github.com/trigger/trigger/issues/8]: get_device_password user-friendly message moved
to pty_connect so it no longer bleeds into
non-interactive usage.

	[Bug] #15 [https://github.com/trigger/trigger/issues/15]: output_ios updated to support optional
acl_name argument for cases when you need to output a
Term separately from an ACL
object. check_access, bin/check_access, and
bin/find_access also had to be updated to utilize this new argument.

	[Bug] #19 [https://github.com/trigger/trigger/issues/19]: check_access updated to support ‘complicated’
checks against Juniper firewall terms with a ‘port’ statement defined.

1.0.0.100

	conf converted from a module to a package.

	All global default settings are now baked into trigger.conf.settings

	settings and autoacl may now be imported without the
proper expected config files in place on disk. If the config files cannot be
found, default versions of these objects will be returned.

	All trigger modules can now be imported with default values (but don’t try
instantiating any objects without following the install instructions!)

	[Bug] #2 [https://github.com/trigger/trigger/issues/2]: Fixed a bug in Tacacsrc where newly-created
.tacacsrc files were world-readable. Correct 0600 perms are now enforced on
every write().

	[Feature] #3 [https://github.com/trigger/trigger/issues/3]: Added the ability for :class:~trigger.twister.IoslikeSendExpect`
to handle confirmation prompts (such as when a device asks you “are you sure?
[y/N]:” by detecting common cases within the prompt-matching logic.

	[Feature] #5 [https://github.com/trigger/trigger/issues/5]: Added ability for gong –oob to lookup devices by partial
hostnames using device_match().

	[Bug] #6 [https://github.com/trigger/trigger/issues/6]: The get_firewall_db_conn() function was moved out of settings.py
and into Queue where it belongs.

	[Feature] #7 [https://github.com/trigger/trigger/issues/7]: Updated has_ioslike_error() to support
Brocade VDX errors.

1.0.0.90

	Added support for .gorc file to specify commands to run when using gong to
login to a device. Unique commands cand be specified for each vendor.

	Default realm for credentials within .tacacsrc can now be specified within
settings.DEFAULT_REALM

	The following changes have been made to trigger.tacacsrc:

	New module-level update_credentials() function added to facilitate updating of
cached user credentials by client applications (e.g. gong)

	Renamed the exceptions within trigger.tacacsrc to be more human-readable

	Tacacsrc._parse_old() completely redesigned with real error-handling for
bad/missing passwords (GPG-parsing coming “Soon”)

	New Tacacsrc.update_creds() method used to facilitate update of stored
credentials within .tacacsrc

	Realm is now stored as an attribute on Credentials objects to simplify
loose-coupling of device/realm information while passing around
credentials.

	prompt_credentials() refactored to be more user-friendly.

	Blank passwords can no longer be stored within .tacacsrc.

	The following changes have been made to trigger.twister:

	trigger.twister internals have been updated to support the passing of a
list of initial_commands to execute on a device upon logging in.

	TriggerClientFactory now reads the default realm from
settings.DEFAULT_REALM when populating credentials.

	TriggerClientFactory credentials detection improved

	All referencing of username/password from credentials by index replaced
with attributes.

	Failed logins via telnet/ssh will now raise a LoginFailure exception that
can be handled by client applications (such as gong)

	bin/gong now detects login failures and prompts users to update their cached
password.

1.0.0.80

	Typo fix in sample configs/trigger_settings.py

	Explicit imports from trigger.acl and a little docstring cleanup in bin/optimizer

	trigger.acl.autoacl.autoacl() now takes optional explicit_acls as 2nd
argument, a set of ACL names, so that we can reference explicit_acls within
autoacl() implicit ACL logic, but we don’t have to rely on the internals.

	trigger.acl.db.AclsDB.get_acl_set() modified to populate explicit_acls before
implicit_acls. autoacl() is now called with these explicit_acls as the 2nd
argument.

	Sample autoacl.py in configs/autoacl.py updated to support explicit_acls and a
simple example of how it could be used.

	Added support for Juniper “family inet” filters in trigger.acl.parser.

	ACL objects now have a family attribute to support this when constructed or
parsed using the .output_junos() method.

1.0.0.70

	Minor bugfix in trigger.netdevices._parse_xml()

1.0.0.60

	New nd2json.py nad nd2sqlite.py tools for use in converting existing
netdevices.xml implementations

	Added sample netdevices.json in configs/netdevices.json

	Added SQLite database schema for netdevices in configs/netdevices.sql

1.0.0.50

	New NetDevices device metadata source file support for JSON, XML, or SQLite3

	Companion changes made to configs/trigger_settings.py

	trigger.netdevice.NetDevice objects can now be created on their own and have
the minimum set of attributes defaulted to None upon instantiation

1.0.0.40

	Public release!

	Arista and Dell command execution and interactive login support in trigger.twister!

Legacy Versions

Trigger was renumbered to version 1.0 when it was publicly released on April 2,
2012. This legacy version history is incomplete, but is kept here for posterity.

1.6.1

	Users credentials from tacacsrc.Tacacsrc are now stored as a namedtuple aptly
named ‘Credentials’

1.6.0 - 2011-10-26

	Fixed missing acl.parse import in bin/find_access

	More documentation cleanup!

	The following changes have been made to trigger.cmds.Commando:

	Added parse/generate methods for Citrix NetScaler devices

	Renamed Commando.work to Commando.jobs to avoid confusing inside of
Commando._add_worker()

	Added distinct parse/generate methods for each supported vendor type (new:
Brocade, Foundry, Citrix)

	Generate methods are no longer called each time _setup_callback() is
called; they are now called once an entry is popped from the jobs queue.

	All default parse/generate methods now reference base methods to follow DRY
in this base class.

	Fixed incorrect IPy.IP import in bin/acl_script

	Trigger.twister.pty_connect will only prompt for distinct passwors on firewalls

	Added _cleanup() method to acl.parser.RangeList objects to allow for addition
of lists of mixed lists/tuples/digits and still account for more complex
types such as Protocol objects

	Performance tweak to Rangelist._expand() method for calculating ranges.

	Added parsing support for remark statements in IOS numbered ACLs

1.5.9 - 2011-08-17

	Tons and tons of documentation added into the docs folder including usage,
API, and setup/install documentation.

	Tons of code docstrings added or clarified across the entire package.

	Added install_requires to setup() in setup.py; removed bdist_hcm install command.

	The following changes have been made to trigger.twister:

	Massive, massive refactoring.

	New base class for SSH channels.

	New NetScaler SSH channel. (Full NetScaler support!)

	New execute_netscaler() factory function.

	execute_netscreenlike() renamed to execute_netscreen().

	Every class method now has a docstring.

	Many, many things moved around and organized.

	Added doctsrings to trigger.netdevices.NetDevice class methods

	The following CLI scripts have been removed from Trigger packaging to an internal
repo & removed from setup.py. (These may be added back after further internal
code review.)

	bin/acl_mass_delete

	bin/acl_mass_insert

	bin/fang

	bin/get_session

	bin/merge_acls

	The following CLI scripts have had their documentation/attributions updated:

	bin/fe

	bin/gong

	bin/load_acl

	Restructuring within bin/load_acl to properly abstract fetching of on-call
engineer data and CM ticket creation into trigger_settings.py.

	External release sanitization:

	Template for trigger_settings.py updated and internal references removed.

	Sanitized autoacl.py and added generic usage examples.

	The following items have been moved from bin/load_acl into trigger.utils.cli:

	NullDevice, print_severed_head, min_sec, pretty_time.

	Fixed a bug in trigger.utils.rcs.RCS that would cause RCS log printing to fail.

	Added REDIS_PORT, REDIS_DB to trigger_settings.py and tweaked trigger.acl.db to support it.

	Fixed bug in bin/netdev causing a false positive against search options.

	trigger.netscreen: Tweak EBNF slightly to parse policies for ScreenOS 6.x.

1.5.8 - 20011-06-08

	trigger.acl.parser fully supports Brocade ACLs now, including the ability to strip comments and properly
include the “ip rebind-receive-acl” or “ip rebind-acl” commands.

	trigger.acl.Term objects have a new output_ios_brocade() method to support Brocade-special ACLs

	bin/load_acl will automatically strip comments from Brocade ACLs

1.5.7 - 2011-06-01

	Where possible replaced ElementTree with cElementTree for faster XML parsing

	New NetDevices.match() method allows for case-insensitive queries for devices.

	NetDevices.search() now accepts optional field argument but defaults to nodeName.

	New trigger.acl.ACL.strip_comments() method … strips… comments… from ACL object.

	bin/fang:

	Now accepts hostnames as arguments

	Now really properly parses hops on Brocade devices.

	bin/load_acl:

	Now fully supports Brocade devices.

	Strips comments from Brocade ACLs prior to staging and load.

	Now displays temporary log file location to user.

	Removed jobi, orb, nms modules from Trigger; replaced with python-aol versions.

1.5.6 - 2011-05-24

	bin/acl: corrected excpetion catching, changes option help text and made -a and -r append

	bin/gnng, bin/netdev: Added -N flag to toggle production_only flag to NetDevices

	trigger.cmds/trigger.twister: Added support for ‘BROCADE’ vendor (it’s ioslike!)

	trigger.cmds.Commando: All generate_* methods are now passed a device object as the first argument
to allow for better dynamic handling of commands to execute

	bin/fang: Can now properly parse hops on Brocade devices.

1.5.5 - 2011-04-27

	bin/acl: Will now tell you when something isn’t found

	bin/acl: Added -q flag to silence messages if needed

	get_terminal_width() moved to trigger.utils.cli

	trigger.tacacsrc: Fixed bogus AssertionError for bad .tacacsrc file. Clarified error.

	trigger.twister: Fixed bug in Dell password prompt matching in execute_ioslike()

	bin/fang: Increased default timeout to 30 seconds when collecting devices.

	trigger.cmds.Commando:

	Replaced all ‘__foo()’ with ‘_foo()’

	Removed Commando constructor args that are not used at this time

	Added production_only flag to Commando constructor

1.5.4 - 2011-03-09

	Fixed a bug in trigger.cmds.Commando that would prevent reactor loop from
continuing after an exception was thrown.

	trigger.cmds.Commando now has configurable timeout value (defaults to 30
seconds)

	trigger.acl.tools now looks at acl comments for trigger: make discard

	fixed a bug with gong connecting to devices’ oob

1.5.3 - 2011-01-12

	Fixed a bug in trigger.cmds.NetACLInfo where verbosity was not correctly
toggled.

	gong (go) will now connect to non-prod devices and throw a warning to the
user

	gong can connect to a device through oob by passing the -o or –oob option.

	acl will make any device name lower case before associating an acl with it.

1.5.2 - 2010-11-03

	bin/find_access: Added -D and -S flags to exclude src/dst of ‘any’ from
search results. Useful for when you need to report on inclusive networks but
not quite as inclusive as 0.0.0.0/0.

	Fixed a bug in acls.db where a device without an explicit association would
return None and throw a ValueError that would halt NetDevices construction.

	Added __hash__() to NetDevice objects so they can be serialized (pickled)

	Fixed a bug in explicit ACL associations that would sometimes return
incorrect results

	trigger.cmds.NetACLInfo now has a verbosity toggle (defaults to quiet)

	Caught an exception thrown in NetACLInfo for some Cisco devices

1.5.1 - 2010-09-08

	trigger.conf: import_path() can now be re-used by other modules to load
modules from file paths without needing to modify sys.path.

	autoacl can now be loaded from a location specified in settings.AUTOACL_FILE
allowing us to keep the ever-changing business rules for acl/device mappings
out of the Trigger packaging.

	netdevices:

	Slight optimization to NetDevice attribute population

	Added new fields to NetDevice.dump() output

	All incoming fields from netdevices.xml now normalized

	bin/netdev:

	added search option for Owning Team (-o)

	search opt for OnCall Team moved to -O

	search opt for Owning Org (cost center) moved to -C

	added search option for Budget Name (-B)

	refactored search argument parsing code

	bin/fang:

	will now not display information for ACLs found in settings.IGNORED_ACLS

1.5.0r2 - 2010-08-16

	Minor fix to warnings/shebang for bin/scripts

1.5.0 - 2010-08-04

	acl.db: renamed ExplicitACL to AclsDB, all references adjusted

	process_bulk_loads() moved to trigger.acl.tools

	get_bulk_acls() moved to trigger.acl.tdb

	get_all_acls(), get_netdevices(), populate_bulk_acls() added to trigger.acl.db

	load_acl: now imports bulk_acl functions from trigger.acl.tools

	load_acl: now uses trigger.acl.queue API vs. direct db queries

	load_acl: –bouncy now disables bulk acl thresholding

	load_acl: now displays CM ticket # upon successful completion

	process_bulk_loads() now uses device.bulk_acl associations, better performance

	device_match() now sorts and provides correct choices

	Juniper filter-chain support added to trigger.cmds.NetACLInfo

	gnng updated to use NetACLinfo

	Added proceed() utility function trigger.utils.cli

	Several ACL manipulation functions added to trigger.acl.tools:

	get_comment_matches() - returns ACL terms comments matching a pattern

	update_expirations() - updates expiration date for listed ACL terms

	write_tmpacl() - writes an ACL object to a tempfile

	diff_files() - returns a diff of two files

	worklog() - inserts a diff of ACL changes into the ACL worklog

	fang: patched to support Juniper filter-lists

1.4.9r2 - 2010-04-27

	find_access: Corrected missing import for IPy

	tacacsrc.py: Corrected bug with incorrect username association to .tacacsrc in sudo/su
use-cases (such as with cron) where login uid differs from current uid.

1.4.9 - 2010-04-26

	You may now use gong (go) to connect to Dell devices (telnet only).

	Completely overhauled tacacsrc.py to support auto-detection of missing .tacacsrc

	Heavily documented all changes to tacacsrc.py

	Twister now imports from tacacsrc for device password fetching

	gen_tacacsrc.py now imports from tacacsrc for .tacacsrc generation

	load_acl now uses get_firewall_db_conn from global settings

	Added new search() method to NetDevices to search on name matches

	Added a new device_match() function to netdevices for use with gong

	gong now uses device_match() to present choices to users

	netdev now uses device_match() to present choices to users

1.4.8 - 2010-04-16

	acls.db replaced with redis key/value store found at trigger.acl.db

	trigger.acl converted to package

	all former trigger.acl functionality under trigger.acl.parser

	autoacls.py moved to trigger.acl.autoacls

	aclscript.py moved to trigger.acl.tools.py

	netdevices.py now using trigger.acl.db instead of flat files

	added trigger.netdevices.NetDevices.all() as shortcut to itervalues()

	You may now use gong (go) to connect to non-TACACS devices, such as OOB or
unsupported devices using password authentication.

	The ACL parser has been reorganized slightly to make future modifications
more streamlined.

	Load_acl now logs all activity to a location specified in Trigger config file.

	Added new ‘trigger.utils’ package to contain useful modules/operations

	‘acl’ command moved into Trigger package

	‘netdev’ command moved into Trigger package

	Merged trigger.commandscheduler into trigger.nms

	Basic trigger_settings.py provided in conf directory in source dist.

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 trigger	

 	
 	
 trigger.acl	

 	
 	
 trigger.acl.autoacl	

 	
 	
 trigger.acl.db	

 	
 	
 trigger.acl.parser	

 	
 	
 trigger.acl.queue	

 	
 	
 trigger.acl.tools	

 	
 	
 trigger.changemgmt	

 	
 	
 trigger.cmds	

 	
 	
 trigger.conf	

 	
 	
 trigger.contrib.commando	

 	
 	
 trigger.contrib.commando.plugins	

 	
 	
 trigger.contrib.docommand	

 	
 	
 trigger.contrib.xmlrpc	

 	
 	
 trigger.contrib.xmlrpc.server	

 	
 	
 trigger.exceptions	

 	
 	
 trigger.gorc	

 	
 	
 trigger.netdevices	

 	
 	
 trigger.netscreen	

 	
 	
 trigger.rancid	

 	
 	
 trigger.tacacsrc	

 	
 	
 trigger.twister	

 	
 	
 trigger.utils	

 	
 	
 trigger.utils.cli	

 	
 	
 trigger.utils.importlib	

 	
 	
 trigger.utils.network	

 	
 	
 trigger.utils.notifications	

 	
 	
 trigger.utils.notifications.events	

 	
 	
 trigger.utils.notifications.handlers	

 	
 	
 trigger.utils.rcs	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

A

 	
 	ACL (class in trigger.acl)

 	(class in trigger.acl.parser)

 	ACLError

 	ACLNameError

 	ACLProcessor (class in trigger.acl)

 	(class in trigger.acl.parser)

 	ACLQueueError

 	ACLScript (class in trigger.acl.tools)

 	AclsDB (class in trigger.acl.db)

 	ACLSetError

 	ACLStagingFailed

 	ActionError

 	add_acl() (trigger.acl.db.AclsDB method)

 	add_device() (trigger.netdevices.NetDevices._actual method)

 	addHandler() (trigger.contrib.xmlrpc.server.TriggerXMLRPCServer method)

 	
 	addHandlers() (trigger.contrib.xmlrpc.server.TriggerXMLRPCServer method)

 	address_is_internal() (in module trigger.utils.network)

 	all() (trigger.netdevices.NetDevices._actual method)

 	
 ALLOW_JUNIPER_MULTILINE_COMMENTS

 	setting

 	allowable() (trigger.netdevices.NetDevice method)

 	append_parsed_results() (trigger.cmds.Commando method)

 	autoacl() (in module trigger.acl.autoacl)

 	
 AUTOACL_FILE

 	setting

 	
 AUTOLOAD_BULK_THRESH

 	setting

 	
 AUTOLOAD_FILTER

 	setting

 	
 AUTOLOAD_FILTER_THRESH

 	setting

B

 	
 	BadACLName

 	BadCounterName

 	BadForwardingClassName

 	BadIPSecSAName

 	BadMatchArgRange

 	BadPolicerName

 	BadRejectCode

 	BadRoutingInstanceName

 	BadTermName

 	BadVendorName

 	BaseSettings (class in trigger.conf)

 	bounce() (in module trigger.changemgmt)

 	
 	
 BOUNCE_DEFAULT_COLOR

 	setting

 	
 BOUNCE_DEFAULT_TZ

 	setting

 	
 BOUNCE_FILE

 	setting

 	BounceStatus (class in trigger.changemgmt)

 	BounceWindow (class in trigger.changemgmt)

 	buildProtocol() (trigger.twister.TriggerSSHChannelFactory method)

 	
 BULK_MAX_HITS

 	setting

 	
 BULK_MAX_HITS_DEFAULT

 	setting

C

 	
 	can_ssh_async() (trigger.netdevices.NetDevice method)

 	can_ssh_pty() (trigger.netdevices.NetDevice method)

 	channelClosed() (trigger.twister.TriggerSSHConnection method)

 	(trigger.twister.TriggerSSHMultiplexConnection method)

 	channelOpen() (trigger.twister.TriggerSSHAsyncPtyChannel method)

 	(trigger.twister.TriggerSSHChannelBase method)

 	(trigger.twister.TriggerSSHCommandChannel method)

 	(trigger.twister.TriggerSSHJunoscriptChannel method)

 	(trigger.twister.TriggerSSHPica8Channel method)

 	(trigger.twister.TriggerSSHPtyChannel method)

 	check_access() (in module trigger.acl.tools)

 	checkin() (trigger.utils.rcs.RCS method)

 	clientConnectionFailed() (trigger.twister.TriggerClientFactory method)

 	clientConnectionLost() (trigger.twister.TriggerClientFactory method)

 	close() (trigger.netdevices.NetDevice method)

 	closed() (trigger.twister.TriggerSSHCommandChannel method)

 	closeReceived() (trigger.twister.TriggerSSHCommandChannel method)

 	CommandFailure

 	Commando (class in trigger.cmds)

 	CommandoApplication (class in trigger.contrib.commando)

 	CommandoError

 	CommandRunner (class in trigger.contrib.docommand)

 	CommandTimeout

 	
 	Comment (class in trigger.acl)

 	(class in trigger.acl.parser)

 	complete() (trigger.acl.queue.Queue method)

 	concatenate_grp() (trigger.netscreen.NetScreen method)

 	ConfigLoader (class in trigger.contrib.docommand)

 	connect() (in module trigger.twister)

 	ConnectionFailure

 	connectionLost() (trigger.twister.TriggerSSHTransport method)

 	connectionMade() (trigger.twister.Interactor method)

 	(trigger.twister.IoslikeSendExpect method)

 	(trigger.twister.TriggerSSHTransport method)

 	connectionSecure() (trigger.twister.TriggerSSHTransport method)

 	
 CONTINUE_PROMPTS

 	setting

 	convert_tacacsrc() (in module trigger.tacacsrc)

 	CouldNotParse

 	create_access() (in module trigger.acl.tools)

 	
 CREATE_CM_TICKET

 	setting

 	create_new_acl() (in module trigger.acl.tools)

 	create_task() (trigger.acl.queue.Queue method)

 	create_trigger_term() (in module trigger.acl.tools)

 	Credentials (class in trigger.tacacsrc)

 	crypt_md5() (in module trigger.utils)

D

 	
 	
 DATABASE_ENGINE

 	setting

 	
 DATABASE_HOST

 	setting

 	
 DATABASE_NAME

 	setting

 	
 DATABASE_PASSWORD

 	setting

 	
 DATABASE_PORT

 	setting

 	
 DATABASE_USER

 	setting

 	dataReceived() (trigger.twister.Interactor method)

 	(trigger.twister.IoslikeSendExpect method)

 	(trigger.twister.TriggerSSHChannelBase method)

 	(trigger.twister.TriggerSSHCommandChannel method)

 	(trigger.twister.TriggerSSHJunoscriptChannel method)

 	(trigger.twister.TriggerSSHNetscalerChannel method)

 	(trigger.twister.TriggerSSHTransport method)

 	
 	
 DEFAULT_ADMIN_STATUS

 	setting

 	
 DEFAULT_REALM

 	setting

 	
 DEFAULT_TIMEOUT

 	setting

 	
 DEFAULT_TYPES

 	setting

 	delete() (trigger.acl.queue.Queue method)

 	determine_vendor() (trigger.netdevices.Vendor method)

 	device_match() (in module trigger.netdevices)

 	device_object() (trigger.contrib.commando.CommandoApplication method)

 	diff_files() (in module trigger.acl.tools)

 	do_work() (in module trigger.contrib.docommand)

 	DoCommandBase (class in trigger.contrib.docommand)

 	DummySettings (class in trigger.conf)

 	dump() (trigger.changemgmt.BounceWindow method)

 	(trigger.netdevices.NetDevice method)

E

 	
 	email_handler() (in module trigger.utils.notifications)

 	(in module trigger.utils.notifications.handlers)

 	
 EMAIL_SENDER

 	setting

 	EmailEvent (class in trigger.utils.notifications.events)

 	EnablePasswordFailure

 	enableRemote() (trigger.twister.TriggerTelnet method)

 	eofReceived() (trigger.twister.TriggerSSHCommandChannel method)

 	errback() (trigger.cmds.Commando method)

 	(trigger.contrib.docommand.DoCommandBase method)

 	Event (class in trigger.utils.notifications.events)

 	execute() (in module trigger.twister)

 	
 	execute_async_pty_ssh() (in module trigger.twister)

 	execute_exec_ssh() (in module trigger.twister)

 	execute_generic_ssh() (in module trigger.twister)

 	execute_ioslike() (in module trigger.twister)

 	execute_ioslike_ssh() (in module trigger.twister)

 	execute_ioslike_telnet() (in module trigger.twister)

 	execute_junoscript() (in module trigger.twister)

 	execute_netscaler() (in module trigger.twister)

 	execute_netscreen() (in module trigger.twister)

 	execute_pica8() (in module trigger.twister)

 	expanded() (trigger.acl.parser.RangeList method)

 	(trigger.acl.RangeList method)

F

 	
 	
 FAILURE_EMAILS

 	setting

 	
 FAILURE_RECIPIENTS

 	setting

 	
 FALLBACK_MANUFACTURER

 	setting

 	
 FALLBACK_TYPE

 	setting

 	filter_commands() (in module trigger.gorc)

 	find() (trigger.netdevices.NetDevices._actual method)

 	
 FIREWALL_DIR

 	setting

 	
 	from_arista() (trigger.cmds.NetACLInfo method)

 	from_base() (trigger.contrib.commando.CommandoApplication method)

 	(trigger.contrib.docommand.DoCommandBase method)

 	from_brocade() (trigger.cmds.NetACLInfo method)

 	from_cisco() (trigger.cmds.NetACLInfo method)

 	from_force10() (trigger.cmds.NetACLInfo method)

 	from_foundry() (trigger.cmds.NetACLInfo method)

 	from_juniper() (trigger.cmds.NetACLInfo method)

 	(trigger.contrib.commando.CommandoApplication method)

 	(trigger.contrib.docommand.ConfigLoader method)

G

 	
 	gather_devices() (in module trigger.rancid)

 	generate() (trigger.cmds.Commando method)

 	get_acl_dict() (trigger.acl.db.AclsDB method)

 	get_acl_set() (trigger.acl.db.AclsDB method)

 	get_all_acls() (in module trigger.acl.db)

 	get_bulk_acls() (in module trigger.acl.db)

 	(in module trigger.acl.tools)

 	get_commands_from_opts() (in module trigger.contrib.docommand)

 	get_comment_matches() (in module trigger.acl.tools)

 	
 GET_CURRENT_ONCALL

 	setting

 	get_device_password() (in module trigger.tacacsrc)

 	get_devices_by_type() (trigger.netdevices.NetDevices._actual method)

 	get_devices_from_opts() (in module trigger.contrib.docommand)

 	get_devices_from_path() (in module trigger.contrib.docommand)

 	
 	get_init_commands() (in module trigger.gorc)

 	get_jobs() (in module trigger.contrib.docommand)

 	get_list_from_file() (in module trigger.contrib.docommand)

 	get_matching_acls() (in module trigger.acl.db)

 	get_model() (trigger.acl.queue.Queue method)

 	get_terminal_size() (in module trigger.utils.cli)

 	get_terminal_width() (in module trigger.utils.cli)

 	
 GET_TFTP_SOURCE

 	setting

 	get_user() (in module trigger.utils.cli)

 	getGenericAnswers() (trigger.twister.TriggerSSHUserAuth method)

 	getPassword() (trigger.twister.TriggerSSHUserAuth method)

 	
 GORC_ALLOWED_COMMANDS

 	setting

 	
 GORC_FILE

 	setting

H

 	
 	handle_login_failure() (in module trigger.twister)

 	handle_raw_netscreen() (trigger.netscreen.NetScreen method)

 	has_ioslike_error() (in module trigger.twister)

 	
 	has_juniper_error() (in module trigger.twister)

 	has_junoscript_error() (in module trigger.twister)

 	has_netscaler_error() (in module trigger.twister)

 	has_ssh() (trigger.netdevices.NetDevice method)

I

 	
 	
 IGNORED_ACLS

 	setting

 	import_module() (in module trigger.utils.importlib)

 	import_module_from_path() (in module trigger.utils.importlib)

 	ImproperlyConfigured

 	IncrementalXMLTreeBuilder (class in trigger.twister)

 	insert() (trigger.acl.queue.Queue method)

 	insert_term_into_acl() (in module trigger.acl.tools)

 	Interactor (class in trigger.twister)

 	
 INTERNAL_NETWORKS

 	setting

 	InvalidACLSet

 	InvalidBounceWindow

 	ios_address_str() (trigger.acl.Matches method)

 	(trigger.acl.parser.Matches method)

 	ios_port_str() (trigger.acl.Matches method)

 	(trigger.acl.parser.Matches method)

 	
 IOSLIKE_VENDORS

 	setting

 	
 	IoslikeCommandFailure

 	IoslikeSendExpect (class in trigger.twister)

 	IPhost() (trigger.cmds.NetACLInfo method)

 	IPsubnet() (trigger.cmds.NetACLInfo method)

 	is_awaiting_confirmation() (in module trigger.twister)

 	is_brocade_vdx() (trigger.netdevices.NetDevice method)

 	is_cisco_asa() (trigger.netdevices.NetDevice method)

 	is_cisco_nexus() (trigger.netdevices.NetDevice method)

 	is_cumulus() (trigger.netdevices.NetDevice method)

 	is_firewall() (trigger.netdevices.NetDevice method)

 	is_ioslike() (trigger.netdevices.NetDevice method)

 	is_netscaler() (trigger.netdevices.NetDevice method)

 	is_netscreen() (trigger.netdevices.NetDevice method)

 	is_pica8() (trigger.netdevices.NetDevice method)

 	is_reachable() (trigger.netdevices.NetDevice method)

 	is_router() (trigger.netdevices.NetDevice method)

 	is_switch() (trigger.netdevices.NetDevice method)

J

 	
 	
 JUNIPER_FULL_COMMIT_FIELDS

 	setting

 	JuniperElement (class in trigger.utils)

 	
 	junos_str() (trigger.acl.Matches method)

 	(trigger.acl.parser.Matches method)

 	JunoscriptCommandFailure

K

 	
 	key (trigger.utils.JuniperElement attribute)

L

 	
 	list() (trigger.acl.queue.Queue method)

 	list_firewalls() (trigger.netdevices.NetDevices._actual method)

 	list_routers() (trigger.netdevices.NetDevices._actual method)

 	list_switches() (trigger.netdevices.NetDevices._actual method)

 	listProcedures() (trigger.contrib.xmlrpc.server.TriggerXMLRPCServer method)

 	literals() (in module trigger.acl)

 	(in module trigger.acl.parser)

 	LoaderFailed

 	lock() (trigger.utils.rcs.RCS method)

 	
 	lock_loop() (trigger.utils.rcs.RCS method)

 	log() (trigger.utils.rcs.RCS method)

 	login_state_machine() (trigger.twister.TriggerTelnet method)

 	LoginFailure

 	LoginTimeout

 	lookupProcedure() (trigger.contrib.xmlrpc.server.TriggerXMLRPCServer method)

 	loseConnection() (trigger.twister.Interactor method)

 	(trigger.twister.TriggerSSHChannelBase method)

 	(trigger.twister.TriggerSSHCommandChannel method)

M

 	
 	main() (in module trigger.contrib.docommand)

 	(in module trigger.contrib.xmlrpc.server)

 	map_parsed_results() (trigger.cmds.Commando method)

 	map_results() (trigger.cmds.Commando method)

 	(trigger.contrib.commando.CommandoApplication method)

 	match() (trigger.netdevices.NetDevices._actual method)

 	MatchError

 	Matches (class in trigger.acl)

 	(class in trigger.acl.parser)

 	
 	min_sec() (in module trigger.utils.cli)

 	MissingACLName

 	MissingPassword

 	MissingPlatform

 	MissingRealmName

 	MissingTermName

 	monitor_result() (trigger.cmds.ReactorlessCommando method)

 	(trigger.contrib.commando.CommandoApplication method)

N

 	
 	name_terms() (trigger.acl.ACL method)

 	(trigger.acl.parser.ACL method)

 	NetACLInfo (class in trigger.cmds)

 	NetDevice (class in trigger.netdevices)

 	NetDeviceError

 	NetDevices (class in trigger.netdevices)

 	NetDevices._actual (class in trigger.netdevices)

 	
 NETDEVICES_FORMAT

 	setting

 	
 NETDEVICES_SOURCE

 	setting

 	netmask2cidr() (trigger.netscreen.NetScreen method)

 	NetscalerCommandFailure

 	NetScreen (class in trigger.netscreen)

 	NetScreenError

 	NetScreenParseError

 	next_ok() (trigger.changemgmt.BounceWindow method)

 	(trigger.netdevices.NetDevice method)

 	NodePort (in module trigger.utils)

 	
 	
 NONMOD_ACLS

 	setting

 	normalized (trigger.netdevices.Vendor attribute)

 	Notification (class in trigger.utils.notifications.events)

 	
 NOTIFICATION_HANDLERS

 	setting

 	
 NOTIFICATION_SENDER

 	setting

 	NotificationFailure

 	notify() (in module trigger.utils.notifications)

 	(in module trigger.utils.notifications.handlers)

 	NSAddress (class in trigger.netscreen)

 	NSAddressBook (class in trigger.netscreen)

 	NSGroup (class in trigger.netscreen)

 	NSPolicy (class in trigger.netscreen)

 	NSRawGroup (class in trigger.netscreen)

 	NSRawPolicy (class in trigger.netscreen)

 	NSService (class in trigger.netscreen)

 	NSServiceBook (class in trigger.netscreen)

 	NullDevice (class in trigger.utils.cli)

O

 	
 	open() (trigger.netdevices.NetDevice method)

 	output() (trigger.acl.ACL method)

 	(trigger.acl.Term method)

 	(trigger.acl.parser.ACL method)

 	(trigger.acl.parser.Term method)

 	output_ios() (trigger.acl.ACL method)

 	(trigger.acl.Comment method)

 	(trigger.acl.Matches method)

 	(trigger.acl.Term method)

 	(trigger.acl.parser.ACL method)

 	(trigger.acl.parser.Comment method)

 	(trigger.acl.parser.Matches method)

 	(trigger.acl.parser.Term method)

 	output_ios_brocade() (trigger.acl.ACL method)

 	(trigger.acl.parser.ACL method)

 	output_ios_named() (trigger.acl.ACL method)

 	(trigger.acl.Comment method)

 	(trigger.acl.Remark method)

 	(trigger.acl.Term method)

 	(trigger.acl.parser.ACL method)

 	(trigger.acl.parser.Comment method)

 	(trigger.acl.parser.Remark method)

 	(trigger.acl.parser.Term method)

 	
 	output_iosxr() (trigger.acl.ACL method)

 	(trigger.acl.Comment method)

 	(trigger.acl.Term method)

 	(trigger.acl.parser.ACL method)

 	(trigger.acl.parser.Comment method)

 	(trigger.acl.parser.Term method)

 	output_junos() (trigger.acl.ACL method)

 	(trigger.acl.Comment method)

 	(trigger.acl.Matches method)

 	(trigger.acl.Term method)

 	(trigger.acl.parser.ACL method)

 	(trigger.acl.parser.Comment method)

 	(trigger.acl.parser.Matches method)

 	(trigger.acl.parser.Term method)

P

 	
 	parse() (in module trigger.acl)

 	(in module trigger.acl.parser)

 	(trigger.cmds.Commando method)

 	(trigger.netscreen.NetScreen method)

 	parse_commands() (in module trigger.gorc)

 	parse_devices() (in module trigger.rancid)

 	parse_node_port() (in module trigger.utils)

 	parse_rancid_data() (in module trigger.rancid)

 	parse_rancid_file() (in module trigger.rancid)

 	parse_template() (trigger.cmds.Commando method)

 	ParseError

 	password (trigger.tacacsrc.Credentials attribute)

 	ping() (in module trigger.utils.network)

 	Policer (class in trigger.acl)

 	(class in trigger.acl.parser)

 	
 	PolicerGroup (class in trigger.acl)

 	(class in trigger.acl.parser)

 	populate_bulk_acls() (in module trigger.acl.db)

 	
 PREFIX

 	setting

 	pretty_time() (in module trigger.utils.cli)

 	print_results() (in module trigger.contrib.docommand)

 	print_severed_head() (in module trigger.utils.cli)

 	print_work() (in module trigger.contrib.docommand)

 	proceed() (in module trigger.utils.cli)

 	process_bulk_loads() (in module trigger.acl.tools)

 	prompt_credentials() (in module trigger.tacacsrc)

 	Protocol (class in trigger.acl)

 	(class in trigger.acl.parser)

 	pty_connect() (in module trigger.twister)

Q

 	
 	Queue (class in trigger.acl.queue)

R

 	
 	Rancid (class in trigger.rancid)

 	
 RANCID_RECURSE_SUBDIRS

 	setting

 	RancidDevice (class in trigger.rancid)

 	RangeList (class in trigger.acl)

 	(class in trigger.acl.parser)

 	RCS (class in trigger.utils.rcs)

 	reactor_running (trigger.cmds.Commando attribute)

 	ReactorlessCommando (class in trigger.cmds)

 	read_config() (in module trigger.gorc)

 	realm (trigger.tacacsrc.Credentials attribute)

 	receiveError() (trigger.twister.TriggerSSHTransport method)

 	
 REDIS_DB

 	setting

 	
 	
 REDIS_HOST

 	setting

 	
 REDIS_PORT

 	setting

 	Remark (class in trigger.acl)

 	(class in trigger.acl.parser)

 	remove() (trigger.acl.queue.Queue method)

 	remove_acl() (trigger.acl.db.AclsDB method)

 	requires_enable() (in module trigger.twister)

 	run() (trigger.cmds.Commando method)

 	(trigger.cmds.ReactorlessCommando method)

 	(trigger.contrib.commando.CommandoApplication method)

 	(trigger.utils.cli.Whirlygig method)

 	run_channeled_commands() (trigger.netdevices.NetDevice method)

 	run_commands() (trigger.netdevices.NetDevice method)

S

 	
 	S() (in module trigger.acl)

 	(in module trigger.acl.parser)

 	search() (trigger.netdevices.NetDevices._actual method)

 	select_next_device() (trigger.cmds.Commando method)

 	send_command() (trigger.twister.TriggerSSHMultiplexConnection method)

 	send_email() (in module trigger.utils.notifications)

 	send_enable() (in module trigger.twister)

 	send_next_command() (trigger.twister.TriggerSSHCommandChannel method)

 	send_notification() (in module trigger.utils.notifications)

 	sendDisconnect() (trigger.twister.TriggerSSHTransport method)

 	serviceStarted() (trigger.twister.TriggerSSHConnection method)

 	set_action_or_modifier() (trigger.acl.parser.Term method)

 	(trigger.acl.Term method)

 	set_loader() (trigger.netdevices.NetDevices._actual method)

 	
 setting

 	ALLOW_JUNIPER_MULTILINE_COMMENTS

 	AUTOACL_FILE

 	AUTOLOAD_BULK_THRESH

 	AUTOLOAD_FILTER

 	AUTOLOAD_FILTER_THRESH

 	BOUNCE_DEFAULT_COLOR

 	BOUNCE_DEFAULT_TZ

 	BOUNCE_FILE

 	BULK_MAX_HITS

 	BULK_MAX_HITS_DEFAULT

 	CONTINUE_PROMPTS

 	CREATE_CM_TICKET

 	DATABASE_ENGINE

 	DATABASE_HOST

 	DATABASE_NAME

 	DATABASE_PASSWORD

 	DATABASE_PORT

 	DATABASE_USER

 	DEFAULT_ADMIN_STATUS

 	DEFAULT_REALM

 	DEFAULT_TIMEOUT

 	DEFAULT_TYPES

 	EMAIL_SENDER

 	FAILURE_EMAILS

 	FAILURE_RECIPIENTS

 	FALLBACK_MANUFACTURER

 	FALLBACK_TYPE

 	FIREWALL_DIR

 	GET_CURRENT_ONCALL

 	GET_TFTP_SOURCE

 	GORC_ALLOWED_COMMANDS

 	GORC_FILE

 	IGNORED_ACLS

 	INTERNAL_NETWORKS

 	IOSLIKE_VENDORS

 	JUNIPER_FULL_COMMIT_FIELDS

 	NETDEVICES_FORMAT

 	NETDEVICES_SOURCE

 	NONMOD_ACLS

 	NOTIFICATION_HANDLERS

 	NOTIFICATION_SENDER

 	PREFIX

 	RANCID_RECURSE_SUBDIRS

 	REDIS_DB

 	REDIS_HOST

 	REDIS_PORT

 	SSH_ASYNC_DISABLED

 	SSH_AUTHENTICATION_ORDER

 	SSH_PORT

 	SSH_PTY_DISABLED

 	STAGE_ACLS

 	SUCCESS_EMAILS

 	SUCCESS_RECIPIENTS

 	SUPPORTED_PLATFORMS

 	SUPPORTED_TYPES

 	SUPPORTED_VENDORS

 	TACACSRC

 	TACACSRC_KEYFILE

 	TELNET_ENABLED

 	TELNET_PORT

 	TELNET_TIMEOUT

 	TEXTFSM_TEMPLATE_DIR

 	TFTPROOT_DIR

 	TRIGGER_ENABLEPW

 	USE_GPG_AUTH

 	VALID_OWNERS

 	VENDOR_MAP

 	VIPS

 	WITH_ACLS

 	
 	Settings (class in trigger.conf)

 	
 SSH_ASYNC_DISABLED

 	setting

 	
 SSH_AUTHENTICATION_ORDER

 	setting

 	
 SSH_PORT

 	setting

 	
 SSH_PTY_DISABLED

 	setting

 	ssh_USERAUTH_BANNER() (trigger.twister.TriggerSSHUserAuth method)

 	ssh_USERAUTH_FAILURE() (trigger.twister.TriggerSSHUserAuth method)

 	SSHConnectionLost

 	
 STAGE_ACLS

 	setting

 	stage_tftp() (in module trigger.contrib.docommand)

 	state_enable() (trigger.twister.TriggerTelnet method)

 	state_enable_pw() (trigger.twister.TriggerTelnet method)

 	state_logged_in() (trigger.twister.TriggerTelnet method)

 	state_login_pw() (trigger.twister.TriggerTelnet method)

 	state_password() (trigger.twister.TriggerTelnet method)

 	state_percent_error() (trigger.twister.TriggerTelnet method)

 	state_raise_error() (trigger.twister.TriggerTelnet method)

 	state_username() (trigger.twister.TriggerTelnet method)

 	status() (trigger.changemgmt.BounceWindow method)

 	stop_reactor() (in module trigger.twister)

 	stopFactory() (trigger.twister.TriggerClientFactory method)

 	store_error() (trigger.cmds.Commando method)

 	(trigger.contrib.commando.CommandoApplication method)

 	store_results() (trigger.cmds.Commando method)

 	(trigger.contrib.commando.CommandoApplication method)

 	(trigger.contrib.docommand.CommandRunner method)

 	(trigger.contrib.docommand.ConfigLoader method)

 	strip_comments() (trigger.acl.ACL method)

 	(trigger.acl.parser.ACL method)

 	strip_juniper_namespace() (in module trigger.utils)

 	
 SUCCESS_EMAILS

 	setting

 	
 SUCCESS_RECIPIENTS

 	setting

 	
 SUPPORTED_PLATFORMS

 	setting

 	
 SUPPORTED_TYPES

 	setting

 	
 SUPPORTED_VENDORS

 	setting

T

 	
 	
 TACACSRC

 	setting

 	Tacacsrc (class in trigger.tacacsrc)

 	
 TACACSRC_KEYFILE

 	setting

 	TacacsrcError

 	
 TELNET_ENABLED

 	setting

 	
 TELNET_PORT

 	setting

 	
 TELNET_TIMEOUT

 	setting

 	Term (class in trigger.acl)

 	(class in trigger.acl.parser)

 	TermList (class in trigger.acl)

 	(class in trigger.acl.parser)

 	test_ssh() (in module trigger.utils.network)

 	test_tcp_port() (in module trigger.utils.network)

 	
 TEXTFSM_TEMPLATE_DIR

 	setting

 	
 TFTPROOT_DIR

 	setting

 	timeoutConnection() (trigger.twister.IoslikeSendExpect method)

 	(trigger.twister.TriggerSSHChannelBase method)

 	(trigger.twister.TriggerTelnet method)

 	TIP (class in trigger.acl)

 	(class in trigger.acl.parser)

 	to_arista() (trigger.cmds.NetACLInfo method)

 	to_brocade() (trigger.cmds.NetACLInfo method)

 	to_cisco() (trigger.cmds.NetACLInfo method)

 	to_force10() (trigger.cmds.NetACLInfo method)

 	to_foundry() (trigger.cmds.NetACLInfo method)

 	to_juniper() (trigger.cmds.Commando method)

 	(trigger.cmds.NetACLInfo method)

 	(trigger.contrib.docommand.ConfigLoader method)

 	trigger.acl (module)

 	trigger.acl.autoacl (module)

 	trigger.acl.db (module)

 	trigger.acl.parser (module)

 	trigger.acl.queue (module)

 	trigger.acl.tools (module)

 	trigger.changemgmt (module)

 	trigger.cmds (module)

 	
 	trigger.conf (module)

 	trigger.contrib.commando (module)

 	trigger.contrib.commando.plugins (module)

 	trigger.contrib.docommand (module)

 	trigger.contrib.xmlrpc (module)

 	trigger.contrib.xmlrpc.server (module)

 	trigger.exceptions (module)

 	trigger.gorc (module), [1]

 	trigger.netdevices (module)

 	trigger.netscreen (module)

 	trigger.rancid (module)

 	trigger.tacacsrc (module)

 	trigger.twister (module)

 	trigger.utils (module)

 	trigger.utils.cli (module)

 	trigger.utils.importlib (module)

 	trigger.utils.network (module)

 	trigger.utils.notifications (module)

 	trigger.utils.notifications.events (module)

 	trigger.utils.notifications.handlers (module)

 	trigger.utils.rcs (module)

 	
 TRIGGER_ENABLEPW

 	setting

 	TriggerClientFactory (class in trigger.twister)

 	TriggerError

 	TriggerSSHAsyncPtyChannel (class in trigger.twister)

 	TriggerSSHChannelBase (class in trigger.twister)

 	TriggerSSHChannelFactory (class in trigger.twister)

 	TriggerSSHCommandChannel (class in trigger.twister)

 	TriggerSSHConnection (class in trigger.twister)

 	TriggerSSHGenericChannel (class in trigger.twister)

 	TriggerSSHJunoscriptChannel (class in trigger.twister)

 	TriggerSSHMultiplexConnection (class in trigger.twister)

 	TriggerSSHNetscalerChannel (class in trigger.twister)

 	TriggerSSHPica8Channel (class in trigger.twister)

 	TriggerSSHPtyChannel (class in trigger.twister)

 	TriggerSSHPtyClientFactory (class in trigger.twister)

 	TriggerSSHTransport (class in trigger.twister)

 	TriggerSSHUserAuth (class in trigger.twister)

 	TriggerTelnet (class in trigger.twister)

 	TriggerTelnetClientFactory (class in trigger.twister)

 	TriggerXMLRPCServer (class in trigger.contrib.xmlrpc.server)

 	TwisterError

U

 	
 	UnknownActionName

 	UnknownMatchArg

 	UnknownMatchType

 	unlock() (trigger.utils.rcs.RCS method)

 	UnsupportedDeviceType

 	UnsupportedVendor

 	
 	update_credentials() (in module trigger.tacacsrc)

 	update_creds() (trigger.tacacsrc.Tacacsrc method)

 	
 USE_GPG_AUTH

 	setting

 	user_has_gpg() (trigger.tacacsrc.Tacacsrc method)

 	username (trigger.tacacsrc.Credentials attribute)

V

 	
 	
 VALID_OWNERS

 	setting

 	validate_credentials() (in module trigger.tacacsrc)

 	value (trigger.utils.JuniperElement attribute)

 	Vendor (class in trigger.netdevices)

 	
 VENDOR_MAP

 	setting

 	
 	VendorSupportLacking

 	verify_opts() (in module trigger.contrib.docommand)

 	verifyHostKey() (trigger.twister.TriggerSSHTransport method)

 	VersionMismatch

 	
 VIPS

 	setting

 	vprint() (trigger.acl.queue.Queue method)

W

 	
 	walk_rancid_subdirs() (in module trigger.rancid)

 	Whirlygig (class in trigger.utils.cli)

 	
 WITH_ACLS

 	setting

 	
 	worklog() (in module trigger.acl.tools)

 	write() (trigger.tacacsrc.Tacacsrc method)

 	write_tmpacl() (in module trigger.acl.tools)

X

 	
 	xml_print() (in module trigger.contrib.docommand)

 	xmlrpc_add() (trigger.contrib.xmlrpc.server.TriggerXMLRPCServer method)

 	
 	xmlrpc_add_handler() (trigger.contrib.xmlrpc.server.TriggerXMLRPCServer method)

 	xmlrpc_execute_commands() (trigger.contrib.xmlrpc.server.TriggerXMLRPCServer method)

 	xmlrpc_fault() (trigger.contrib.xmlrpc.server.TriggerXMLRPCServer method)

Y

 	
 	yesno() (in module trigger.utils.cli)

Important

Throughout this documentation you will see commands or code preceded by
a triple greater-than prompt (>>>). This indicates that they are being
entered into a Python interpreter in interactive mode.

To start Python in interactive mode, it’s as simple as executing
python from a command prompt:

% python
Python 2.7.2 (default, Jun 20 2012, 16:23:33)
Type "help", "copyright", "credits" or "license" for more information.
>>>

For more information, please see the official Python documentation on
interactive mode [http://docs.python.org/tutorial/interpreter.html#interactive-mode].

Adding New Vendors to Trigger

This is a work in progress. Please bear with us as we expand and improve this
documentation. If you have any feedback, please don’t hesitate to contact us [http://trigger.readthedocs.io/en/latest/index.html#getting-help]!!

	Checklist

	Interactive (pty) sessions

	Async factory methods for remote execution

	Commando support

	Error messages/timeouts

Checklist

You need to account for the following:

Interactive (pty) sessions

	Does it support telnet?

	Does it support SSH? (Should work by default)

	What is the SSH auth method? (keyboard-interactive, password, etc.)

Async factory methods for remote execution

	For telnet: Can you use IoslikeSendExpect state machine?

	For SSH:

	Does it support SSH exec? Try execute_exec_ssh

	Does it support SSH shell? Try execute_generic_ssh

	What is the prompt pattern?

	What is the command to disable paging?

	add ‘vendor_name’: ‘disable paging command\n’ to trigger.netdevices.NetDevice._set_startup_commands.paging_map dictionary.

	What is the command to commit/write to memory?

	Account for ‘vendor_name’ in trigger.netdevices.NetDevice._set_commit_commands

Commando support

Add the vendor name to the following:

	add ‘vendor_name’ to settings.SUPPORTED_VENDORS

	add ‘VENDOR INTERAL NAME’: ‘vendor_name’ to settings.VENDOR_MAP

	add ‘vendor_name’: [‘DEVICE_TYPE’] to settings.SUPPORTED_PLATFORMS

	add ‘vendor_name’: ‘DEVICE_TYPE’ to settings.DEFAULT_TYPES

	add ‘vendor_name’ to settings.IOSLIKE_VENDORS

Error messages/timeouts

Determine how error messages are displayed, and what default timeouts (if
any) need to be accounted for, for example:

"% Invalid input detected at '^' marker."

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Trigger

 		
 Overview

 		
 About

 		
 Motivation

 		
 History

 		
 Components

 		
 NetDevices

 		
 Twister

 		
 Access-List Parser

 		
 Change Management

 		
 Commands

 		
 TACACSrc

 		
 Command-Line Tools

 		
 Supported Platforms

 		
 Installation

 		
 Dependencies

 		
 Python

 		
 setuptools

 		
 PyASN1

 		
 cryptography

 		
 Twisted

 		
 Redis

 		
 IPy

 		
 pytz

 		
 SimpleParse

 		
 Other Dependencies

 		
 Installing Trigger

 		
 Install Trigger package

 		
 Create configuration directory

 		
 Basic Configuration

 		
 Copy settings.py

 		
 Copy metadata file

 		
 Copy shared secret file

 		
 Copy autoacl.py

 		
 Copy bounce.py

 		
 Verifying Functionality

 		
 NetDevices

 		
 ACL Parser

 		
 ACL Database

 		
 Integrated Load Queue

 		
 Database Drivers

 		
 Configuration

 		
 A Word about Defaults

 		
 settings.py

 		
 autoacl()

 		
 Configuration Directives

 		
 Global settings

 		
 Twister settings

 		
 NetDevices settings

 		
 Bounce Window settings

 		
 Redis settings

 		
 Database settings

 		
 Access-list Management settings

 		
 Access-list loading & rate-limiting settings

 		
 On-Call Engineer Display settings

 		
 CM Ticket Creation settings

 		
 Notification settings

 		
 Usage Guide

 		
 Command-line Tools

 		
 acl - ACL database interface

 		
 acl_script - Modify ACLs from the command-line

 		
 aclconv - ACL Converter

 		
 check_access - ACL Access Checker

 		
 gnng - Display interface information

 		
 gong - Device connector

 		
 netdev - CLI search for NetDevices

 		
 Determine commands to run upon login using .gorc

 		
 Working with NetDevices

 		
 Your Source Data

 		
 Anatomy of a Device

 		
 Quick Start

 		
 Supported Formats

 		
 Developing with NetDevices

 		
 Plugins

 		
 Using Plugins

 		
 Creating

 		
 Managing Credentials with .tacacsrc

 		
 About

 		
 How it works

 		
 Usage

 		
 Using GPG encryption

 		
 Usage Examples

 		
 Simple Examples

 		
 Working with metadata

 		
 Get an interactive shell

 		
 Work with access-lists

 		
 Cache your login credentials

 		
 Login to a device using the gong script

 		
 Slightly Advanced Examples

 		
 Execute commands asynchronously using Twisted

 		
 Execute commands asynchronously using the Commando API

 		
 Get structured data back using the Commando API

 		
 API Documentation

 		
 trigger.acl — ACL parsing library

 		
 trigger.acl.autoacl

 		
 trigger.acl.db

 		
 trigger.acl.parser

 		
 trigger.acl.queue

 		
 trigger.acl.tools

 		
 trigger.changemgmt — Change management library

 		
 trigger.cmds — Command execution library

 		
 trigger.conf — Configuration & Settings module

 		
 trigger.contrib — Extra, optional tools that solve common problems, extend, or modify core functionality.

 		
 trigger.contrib.commando

 		
 trigger.contrib.commando.plugins

 		
 trigger.contrib.docommand

 		
 trigger.contrib.xmlrpc

 		
 trigger.exceptions — Trigger’s Exceptions

 		
 trigger.gorc — Determine commands to run upon login

 		
 trigger.netdevices — Network device metadata library

 		
 trigger.netscreen — Juniper NetScreen firewall parser

 		
 trigger.rancid — RANCID Compatibility Library

 		
 trigger.tacacsrc — Network credentials library

 		
 trigger.twister — Asynchronous device interaction library

 		
 trigger.utils — CLI tools and utilities library

 		
 trigger.utils.cli

 		
 trigger.utils.importlib

 		
 trigger.utils.network

 		
 trigger.utils.notifications

 		
 trigger.utils.rcs

 		
 Development

 		
 Road Map

 		
 Contributing

 		
 Communication

 		
 Style

 		
 Branching/Repository Layout

 		
 Releases

 		
 Major

 		
 Minor

 		
 Bugfix/tertiary

 		
 Adding Support for New Vendors

 		
 License

 		
 Getting Help

 		
 Mailing list

 		
 Twitter

 		
 Email

 		
 Bugs/ticket tracker

 		
 IRC

 		
 Wiki

 		
 OpenHatch

 		
 Experimental

 		
 Asynchronous Endpoint Feature

 		
 Preamble

 		
 Code

 		
 Changelog

 		
 1.6.0 (2017-03-08)

 		
 Enhancements

 		
 Backwards-incompatible changes

 		
 Bug Fixes

 		
 1.5.10 (2016-04-18)

 		
 Bug Fixes

 		
 1.5.9 (2016-04-01)

 		
 Bug Fixes

 		
 1.5.8 (2016-03-08)

 		
 Bug Fixes

 		
 1.5.7 (2016-02-18)

 		
 Enhancements

 		
 Bug Fixes

 		
 1.5.6 (2016-02-16)

 		
 Bug Fixes

 		
 1.5.5 (2016-02-04)

 		
 Bug Fixes

 		
 1.5.4 (2016-01-29)

 		
 Bug Fixes

 		
 1.5.3 (2016-01-19)

 		
 New Features

 		
 Enhancements

 		
 Bug Fixes

 		
 1.5.2

 		
 New Features

 		
 Bug Fixes

 		
 1.5.1

 		
 New Features

 		
 Enhancements

 		
 1.5

 		
 Bug Fixes

 		
 1.4.9

 		
 New Features

 		
 1.4.8

 		
 New Features

 		
 1.4.7

 		
 New Features

 		
 Bug Fixes

 		
 Bug Fixes

 		
 1.4.6

 		
 Bug Fixes

 		
 1.4.5

 		
 New Features

 		
 Documentation

 		
 Bug Fixes

 		
 1.4.4

 		
 Enhancements

 		
 Bug Fixes

 		
 1.4.3

 		
 New Features

 		
 Enhancements

 		
 Bug Fixes

 		
 1.4.2

 		
 Warnings

 		
 New Features

 		
 Bug Fixes

 		
 1.4.1

 		
 New Features

 		
 Documentation Enhancements

 		
 Bug Fixes

 		
 1.4

 		
 New Features

 		
 Bug fixes

 		
 CLI Tools

 		
 trigger.acl

 		
 trigger.changemgmt

 		
 trigger.cmds

 		
 trigger.netdevices

 		
 trigger.tacacsrc

 		
 trigger.twister

 		
 trigger.utils

 		
 1.3.1

 		
 1.3.0

 		
 1.2.4

 		
 1.2.3

 		
 1.2.2

 		
 1.2.1

 		
 1.2

 		
 1.1

 		
 1.0.0.100

 		
 1.0.0.90

 		
 1.0.0.80

 		
 1.0.0.70

 		
 1.0.0.60

 		
 1.0.0.50

 		
 1.0.0.40

 		
 Legacy Versions

 		
 1.6.1

 		
 1.6.0 - 2011-10-26

 		
 1.5.9 - 2011-08-17

 		
 1.5.8 - 20011-06-08

 		
 1.5.7 - 2011-06-01

 		
 1.5.6 - 2011-05-24

 		
 1.5.5 - 2011-04-27

 		
 1.5.4 - 2011-03-09

 		
 1.5.3 - 2011-01-12

 		
 1.5.2 - 2010-11-03

 		
 1.5.1 - 2010-09-08

 		
 1.5.0r2 - 2010-08-16

 		
 1.5.0 - 2010-08-04

 		
 1.4.9r2 - 2010-04-27

 		
 1.4.9 - 2010-04-26

 		
 1.4.8 - 2010-04-16

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/plus.png

_static/up.png

