

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Trigger 1.3.1 documentation

Trigger

“Keep your eyes on the prize, and your finger on the trigger.”

What is Trigger?

Trigger is a robust network engineering toolkit written in Python that was
designed for interfacing with network devices and managing network
configuration and security policy. It increases the speed and efficiency of
managing large-scale networks while reducing the risk of human error.

Key Features

Trigger is designed to work at scale and can support hundreds or thousands of
network devices with ease. Here are some of things that make Trigger tick:

	Support for SSH, Telnet, and Juniper’s Junoscript XML API

	Easily get an interactive shell or execute commands asynchronously.

	Leverage advanced event-driven functionality to manage any number of
jobs in parallel and handle output or errors as they return.

	Powerful metadata interface for performing complex queries to group and
associate network devices by name, manufacturer, type, location, and more.

	Encrypted storage of login credentials so you can interact without constantly
being prompted to enter your password.

	Flexible access-list & firewall policy parser that can test access if access
is permitted, or easily convert ACLs from one format to another.

	Detailed support for timezones and maintenance windows.

	A suite of tools for simplifying many common tasks.

New in version 1.2.

	Import your metadata from an existing RANCID [http://www.shrubbery.net/rancid/]
installation to get up-and-running quickly!

New in version 1.3.

	Import your metadata from a CSV file and get up-and-running even quicker!

Examples

To illustrate how Trigger works, here are some basic examples of leveraging the
API.

For these examples to work you must have already installed and configured Trigger, so if you haven’t
already please do that first!

Simple Examples

Working with metadata

Get a count of all your devices:

>>> from trigger.netdevices import NetDevices
>>> nd = NetDevices()
>>> len(nd)
5539

(Whoa! That’s a lot!) Let’s look up a device.

>>> dev = nd.find('edge1-abc')
>>> dev.vendor, dev.deviceType
(<Vendor: Juniper>, 'ROUTER')
>>> dev.has_ssh()
True

Get an interactive shell

Since this device has SSH, let’s connect to it:

>>> dev = nd.find('edge1-abc')
>>> dev.connect()
Connecting to edge1-abc.net.aol.com. Use ^X to exit.

Fetching credentials from /home/jathan/.tacacsrc
--- JUNOS 10.2S6.3 built 2011-01-22 20:06:27 UTC
jathan@edge1-abc>

Work with access-lists

Let’s start with a simple Cisco ACL:

>>> from trigger.acl import parse
>>> aclobj = parse("""access-list 123 permit tcp any host 10.20.30.40 eq 80""")
>>> aclobj.terms
[<Term: None>]

And convert it to Juniper format:

>>> aclobj.name_terms() # Juniper policy terms must have names
>>> aclobj.terms
[<Term: T1>]
>>> print '\n'.join(aclobj.output(format='junos'))
filter 123 {
 term T1 {
 from {
 destination-address {
 10.20.30.40/32;
 }
 protocol tcp;
 destination-port 80;
 }
 then {
 accept;
 }
 }
}

Cache your login credentials

Trigger will encrypt and store your credentials in a file called .tacacsrc
in your home directory. We already had them cached in the previous examples, so
I removed it and then:

>>> from trigger.tacacsrc import Tacacsrc
>>> tcrc = Tacacsrc()
/home/jathan/.tacacsrc not found, generating a new one!

Updating credentials for device/realm 'tacacsrc'
Username: jathan
Password:
Password (again):
>>> tcrc.creds['aol']
Credentials(username='jathan', password='boguspassword', realm='tacacsrc')

Passwords can be cached by realm. By default this realm is 'aol', but you
can change that in the settings. Your credentials are encrypted and decrypted
using a shared key. A more secure experimental GPG-encrypted method is in the
works.

Login to a device using the gong script

Trigger includes a simple tool for end-users to connect to devices called
gong. (It should be just go but we’re in the future, so...):

$ gong foo1-cisco
Connecting to foo1-cisco.net.aol.com. Use ^X to exit.

Fetching credentials from /home/jathan/.tacacsrc
foo1-cisco#
foo1-cisco#show clock
20:52:05.777 UTC Sat Jun 23 2012
foo1-cisco#

Partial hostnames are supported, too:

$ gong foo1
2 possible matches found for 'foo1':
[1] foo1-abc.net.aol.com
[2] foo1-xyz.net.aol.com
[0] Exit

Enter a device number: 2
Connecting to foo1-xyz.net.aol.com. Use ^X to exit.

Fetching credentials from /home/jathan/.tacacsrc
foo1-xyz#

Slightly Advanced Examples

Execute commands asynchronously using Twisted

This is a little more advanced... so we saved it for last.

Trigger uses Twisted, which is a callback-based event loop. Wherever possible
Twisted’s implementation details are abstracted away, but the power is there
for those who choose to wield it. Here’s a super simplified example of how this
might be accomplished:

from trigger.netdevices import NetDevices
from twisted.internet import reactor

nd = NetDevices()
dev = nd.find('foo1-abc')

def print_result(data):
 """Display results from a command"""
 print 'Result:', data

def stop_reactor(data):
 """Stop the event loop"""
 print 'Stopping reactor'
 if reactor.running:
 reactor.stop()

Create an event chain that will execute a given list of commands on this
device
async = dev.execute(['show clock'])

When we get results from the commands executed, call this
async.addCallback(print_result)

Once we're out of commands, or we an encounter an error, call this
async.addBoth(stop_reactor)

Start the event loop
reactor.run()

Which outputs:

Result: ['21:27:46.435 UTC Sat Jun 23 2012\n']
Stopping reactor

Observe, however, that this only communicated with a single device.

Execute commands asynchronously using the Commando API

Commando tries to hide Twisted’s implementation details so you
don’t have to deal with callbacks, while also implementing a worker pool so
that you may easily communicate with multiple devices in parallel.

This is a base class that is intended to be extended to perform the operations
you desire. Here is a basic example of how we might perform the same example
above using Commando instead, but also communicating with a second device
in parallel:

from trigger.cmds import Commando

class ShowClock(Commando):
 """Execute 'show clock' on a list of Cisco devices."""
 vendors = ['cisco']
 commands = ['show clock']

if __name__ == '__main__':
 device_list = ['foo1-abc.net.aol.com', 'foo2-xyz.net.aol.com']
 showclock = ShowClock(devices=device_list)
 showclock.run() # Commando exposes this to start the event loop

 print '\nResults:'
 print showclock.results

Which outputs:

Sending ['show clock'] to foo2-xyz.net.aol.com
Sending ['show clock'] to foo1-abc.net.aol.com
Received ['21:56:44.701 UTC Sat Jun 23 2012\n'] from foo2-xyz.net.aol.com
Received ['21:56:44.704 UTC Sat Jun 23 2012\n'] from foo1-abc.net.aol.com

Results:
{
 'foo1-abc.net.aol.com': {
 'show clock': '21:56:44.704 UTC Sat Jun 23 2012\n'
 },
 'foo2-xyz.net.aol.com': {
 'show clock': '21:56:44.701 UTC Sat Jun 23 2012\n'
 }
}

Supported Platforms

Trigger currently officially supports devices manufactured by the following
vendors:

	A10 Networks
	All AX series application delivery controllers and server load balancers

	Arista Networks
	All 7000-family switch platforms

	Aruba Networks
	All Mobility Controller platforms

	Brocade Networks
	ADX application delivery switches

	MLX routers

	VDX switches

	Citrix Systems
	NetScaler application delivery controllers and server load balancers

	Cisco Systems
	All router and switch platforms running IOS

	Dell
	PowerConnect switches

	Foundry/Brocade
	All router and switch platforms (NetIron, ServerIron, et al.)

	Juniper Networks
	All router and switch platforms running Junos

	NetScreen firewalls running ScreenOS (Junos not yet supported)

It’s worth noting that other vendors may actually work with the current
libraries, but they have not been tested. The mapping of supported platforms is
specified in settings.py as SUPPORTED_PLATFORMS. Modify it at
your own risk!

Getting Started

Before you begin

You might be required to tinker with some Python code. Don’t worry, we’ll be gentle!

Important

Throughout this documentation you will see commands or code preceded by
a triple greater-than prompt (>>>). This indicates that they are being
entered into a Python interpreter in interactive mode.

To start Python in interactive mode, it’s as simple as executing
python from a command prompt:

% python
Python 2.7.2 (default, Jun 20 2012, 16:23:33)
Type "help", "copyright", "credits" or "license" for more information.
>>>

For more information, please see the official Python documentation on
interactive mode [http://docs.python.org/tutorial/interpreter.html#interactive-mode].

Installation

Stable releases of Trigger are best installed using pip or
easy_install; or you may download compressed source archives from any of
the official locations. Detailed instructions and links may be found on the
Installation page.

Please keep in mind that before you can truly use Trigger, you must configure
it. This is not overly difficult, but it is an important step.

Configuration

To configure Trigger please see Configuration and defaults. Initial
configuration is relatively easy. If you have any doubts, just start by using
the defaults that are provided in the instructions so you can start tinkering.

To take full advantage of all of the features, there are some hurdles you have
to jump through, but we are working on greatly simplifying this! This is a work
in progress, but it’s not a bad start. Please have a look and give us
feedback on how we can improve!

Documentation

Please note that all documentation is written with users of Python 2.6 or
higher in mind. It’s safe to assume that Trigger will not work properly on
Python versions earlier than Python 2.6.

For now, most of our documentation is automatically generated form the source
code documentation, which is usually very detailed. As we move along, this will
change, especially with regards to some of the more creative ways in which we
use Trigger’s major functionality.

Usage Documentation

Once you’ve properly installed Trigger, you might want to know how to use it.
Please have a look at the
usage documentation!

	Command-line Tools

	Configuration and defaults

	Determine commands to run upon login using .gorc

	Working with NetDevices

	Managing Credentials with .tacacsrc

API Documentation

Trigger’s core API is made up of several components. For a more detailed
explanation of these components, please see the Overview.

	trigger.acl — ACL parsing library

	trigger.changemgmt — Change management library

	trigger.cmds — Command execution library

	trigger.conf — Configuration & Settings module

	trigger.exceptions — Trigger’s Exceptions

	trigger.gorc — Determine commands to run upon login

	trigger.netdevices — Network device metadata library

	trigger.netscreen — Juniper NetScreen firewall parser

	trigger.rancid — RANCID Compatibility Library

	trigger.tacacsrc — Network credentials library

	trigger.twister — Asynchronous device interaction library

	trigger.utils — CLI tools and utilities library

Change Log

Please see the Changelog.

Road Map

We are using milestones [https://github.com/aol/trigger/issues/milestones]
to track Trigger’s development path 30 to 90 days out. This is where we map
outstanding issues to upcoming releases and is the best way to see what’s
coming!

Development

Any hackers interested in improving Trigger (or even users interested in how
Trigger is put together or released) please see the Trigger Development page. It
contains comprehensive info on contributing, repository
layout, our release strategy, and more.

Getting Help

If you’ve scoured the Usage and API
documentation and still can’t find an answer to your question, below are
various support resources that should help. Please do at least skim the
documentation before posting tickets or mailing list questions, however!

Mailing list

The best way to get help with using Trigger is via the trigger-users mailing
list [https://groups.google.com/d/forum/trigger-users] (Google Group). We’ll
do our best to reply promptly!

Twitter

Trigger has an official Twitter account, @pytrigger [http://twitter.com/pytrigger], which is used for announcements and
occasional related news tidbits (e.g. “Hey, check out this neat article on
Trigger!”).

Email

If you don’t do Twitter or mailing lists, please feel free to drop us an email
at pytrigger@aol.com.

Bugs/ticket tracker

To file new bugs or search existing ones, please use the GitHub issue tracker, located at https://github.com/aol/trigger/issues.

IRC

Find us on IRC at #trigger on Freenode (irc://irc.freenode.net).
Trigger is a Pacific coast operation, so your best chance of getting a
real-time response is during the weekdays, Pacific time.

Wiki

We will use GitHub’s built-in wiki located at
https://github.com/aol/trigger/wiki.

OpenHatch

Find Trigger on Openhatch at
http://openhatch.org/+projects/Trigger!

License

Trigger is licensed under the BSD 3-Clause License [http://www.opensource.org/licenses/BSD-3-Clause]. For the explicit details,
please see the License page.

About

Trigger was created by AOL’s [http://dev.aol.com] Network Engineering team.
With the high number of network devices on the AOL network this application is
invaluable to performance and reliability. Hopefully you’ll find it useful for
it on your network and consider
participating!

To learn about Trigger’s background and history as well as an overview of the
various components, please see the Overview.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2006-2013, AOL Inc.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	develop

 	1.3.1

 	1.3

 	1.2.4

 	1.2.3

 	1.2.2

 	1.2.1

 	1.2

 	1.1

 	1.0.0.100

 Command-line Tools

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Trigger 1.3.1 documentation

Command-line Tools

Blah blah blah command-line stuff here.

The following tools are included:

	acl - ACL database interface

	acl_script - Modify ACLs from the command-line

	aclconv - ACL Converter

	check_access - ACL Access Checker

	gnng - Display interface information

	go - Device connector

	netdev - CLI search for NetDevices

 Copyright 2006-2013, AOL Inc.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	develop

 	1.3.1

 	1.3

 	1.2.4

 	1.2.3

 	1.2.2

 	1.2.1

 	1.2

 	1.1

 	1.0.0.100

 acl - ACL database interface

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Trigger 1.3.1 documentation

 	Command-line Tools

acl - ACL database interface

	About

	Usage

	Examples
	Managing ACL associations

	Searching for an ACL or device

	Working with the load queue

About

acl is used to interface with the ACL database and queue. It is a simple
command to manage or determine access-list associations, and allows you to
inject or remove an ACL from the load queue.

Usage

Here is the usage output:

% acl
Usage: acl [options]

Options:
-h, --help show this help message and exit
-s, --staged list currently staged ACLs
-l, --list list ACLs currently in integrated (automated) queue
-m, --listmanual list entries currently in manual queue
-i, --inject inject into load queue
-c, --clear clear from load queue
-x, --exact match entire name, not just start
-d, --device-name-only
 don't match on ACL
-a ADD, --add=ADD add an acl to explicit ACL database, example: "acl -a
 abc123 test1-abc test2-abc"
-r REMOVE, --remove=REMOVE
 remove an acl from explicit ACL database, example:
 "acl -r abc123 -r xyz246 test1-abc"
-q, --quiet be quiet! (For use with scripts/cron)

Examples

Managing ACL associations

Adding an ACL association

When adding an association, you must provide the full ACL name. You may,
however, use the short name of any devices to which you’d like to associate
that ACL:

% acl -a jathan-special test1-abc test2-abc
added acl jathan-special to test1-abc.net.aol.com
added acl jathan-special to test2-abc.net.aol.com

If you try to add an association for a device that does not exist, it will complain:

% acl -a foo godzilla-router
skipping godzilla-router: invalid device

Please use --help to find the right syntax.

Removing an ACL association

Removing associations are subject to the same restrictions as additions, however in this example we’ve referenced the devices by FQDN:

% acl -r jathan-special test1-abc.net.aol.com test2-abc.net.aol.com
removed acl jathan-special from test1-abc.net.aol.com
removed acl jathan-special from test2-abc.net.aol.com

Confirm the removal and observe that it returns nothing:

% acl jathan-special
%

If you try to remove an ACL that is not associated, it will complain:

% acl -r foo test1-abc
test1-abc.net.aol.com does not have acl foo

Searching for an ACL or device

You may search by full or partial names of ACLs or devices. When you search for
results, ACLs are checked first. If there are no matches then device names are
checked second. In either case, the pattern must match the beginning of the name
of the ACL or device.

You may search for the exact name of the ACL we just added:

% acl jathan-special
test1-abc.net.aol.com jathan-special
test2-abc.net.aol.com jathan-special

A partial ACL name will get you the same results in this case:

% acl jathan
test1-abc.net.aol.com jathan-special
test2-abc.net.aol.com jathan-special

A partial name will return all matching objects with names starting with the pattern. Because there are no ACLs starting with 'test1' matching devices are returned instead:

% acl test1
test1-abc.net.aol.com jathan-special abc123 xyz246
test1-def.net.aol.com 8 9 10
test1-xyz.net.aol.com 8 9 10

If you want to search for an exact ACL match, use the -x flag:

% acl -x jathan
No results for ['jathan']

Or if you want to match devices names only, use the -d flag:

% acl -d jathan-special
No results for ['jathan-special']

Working with the load queue

Not finished yet...

Integrated queue

Manual queue

 Copyright 2006-2013, AOL Inc.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	develop

 	1.3.1

 	1.3

 	1.2.4

 	1.2.3

 	1.2.2

 	1.2.1

 	1.2

 	1.1

 	1.0.0.100

 acl_script - Modify ACLs from the command-line

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Trigger 1.3.1 documentation

 	Command-line Tools

acl_script - Modify ACLs from the command-line

	About

	Usage

	Examples
	Understanding --insert-defined

	Understanding --replace-defined

About

acl_script is a tool and an API shipped that allows for the quick and easy
modifications of filters based on various criteria. This is used most in an
automated fashion, allowing for users to quickly and efficiently setup small
scripts to auto-generate various portions of an ACL.

Usage

Here is the usage output:

usage: acl_script [options]

ACL modify/generator from the commandline.
options:
 -h, --help
 -aACL, --acl=ACL specify the acl file
 -n, --no-changes don't make the changes
 --show-mods show modifications being made in a simple format.
 --no-worklog don't make a worklog entry
 -N, --no-input require no input (good for scripts)
 -sSOURCE_ADDRESS, --source-address=SOURCE_ADDRESS
 define a source address
 -dDESTINATION_ADDRESS, --destination-address=DESTINATION_ADDRESS
 define a destination address
 --destination-address-from-file=DESTINATION_ADDRESS_FROM_FILE
 read a set of destination-addresses from a file
 --source-address-from-file=SOURCE_ADDRESS_FROM_FILE
 read a set of source-addresses from a file
 --protocol=PROTOCOL define a protocol
 -pSOURCE_PORT, --source-port=SOURCE_PORT
 define a source-port
 --source-port-range=SOURCE_PORT_RANGE
 define a source-port range
 --destination-port-range=DESTINATION_PORT_RANGE
 define a destination-port range
 -PDESTINATION_PORT, --destination-port=DESTINATION_PORT
 define a destination port
 -tMODIFY_SPECIFIC_TERM, --modify-specific-term=MODIFY_SPECIFIC_TERM
 When modifying a JUNOS type ACL, you may specify this
 option one or more times to define a specific JUNOS
 term you want to modify. This takes one argument which
 should be the name of term.
 -cMODIFY_BETWEEN_COMMENTS, --modify-between-comments=MODIFY_BETWEEN_COMMENTS
 When modifying a IOS type ACL, you may specify this
 option one or more times to define a specific AREA of
 the ACL you want to modify. You must have at least 2
 comments defined in the ACL prior to running. This
 requires two arguments, the start comment, and the end
 comment. Your modifications will be done between the
 two.
 --insert-defined This option works differently based on the type of ACL
 we are modifying. The one similar characteristic is
 that this will never remove any access already defined,
 just append.
 --replace-defined This option works differently based on the type of ACL
 we are modifying. The one similar characteristic is
 that access can be removed, since this replaces whole
 sets of defined data.

Examples

Understanding --insert-defined

This flag will tell acl_script to append (read: never remove) information
to a portion of an ACL.

Junos

On a Junos-type ACL using --insert-defined, this will only replace parts of
the term that have been specified on the command-line. This may sound confusing
but this example should clear things up.

Take the following term:

term sr31337 {
 from {
 source-address {
 10.0.0.0/8;
 11.0.0.0/8;
 }
 destination-address {
 192.168.0.1/32;
 }
 destination-port 80;
 protocol tcp;
 }
 then {
 accept;
 count sr31337;
 }
}

If you run acl_script with the following arguments:

acl_script --modify-specific-term sr31337 --source-address 5.5.5.5/32 --destination-port 81 --insert-defined

The following is generated:

term sr31337 {
 from {
 source-address {
 5.5.5.5/32;
 10.0.0.0/8;
 11.0.0.0/8;
 }
 destination-address {
 192.168.0.1/32;
 }
 destination-port 80-81;
 protocol tcp;
 }
 then {
 accept;
 count sr31337;
 }
}

As you can see 5.5.5.5/32 was added to the source-address portion, and
81 was added as a destination-port. Notice that all other fields were
left alone.

IOS-like

On IOS-like ACLs --insert-defined behaves a little bit differently. In this
case the acl_script will only add access where it is needed.

Take the following example:

!!! I AM L33T
access-list 101 permit udp host 192.168.0.1 host 192.168.1.1 eq 80
access-list 101 permit ip host 192.168.0.5 host 192.168.1.10
access-list 101 permit tcp host 192.168.0.6 host 192.168.1.11 eq 22
!!! I AM NOT L33T

If you run acl_script with the following arguments:

acl_script --modify-between-comments "I AM L33T" "I AM NOT L33T" \
 --source-address 192.168.0.5 \
 --destination-address 192.168.1.10 \
 --destination-address 192.168.1.11 \
 --protocol tcp \
 --destination-port 80 \
 --insert-defined

This output is generated:

!!! I AM L33T
access-list 101 permit udp host 192.168.0.1 host 192.168.1.1 eq 80
access-list 101 permit ip host 192.168.0.5 host 192.168.1.10
access-list 101 permit tcp host 192.168.0.6 host 192.168.1.11 eq 22
access-list 101 permit tcp host 192.168.0.5 host 192.168.1.11 eq 80
!!! I AM NOT L33T

As you can see the last line was added, take note that the
192.168.0.5->192.168.1.10:80 access was not added because it was already
permitted previously.

Understanding --replace-defined

This flag will completely replace portions of an ACL with newly-defined information.

Junos

Take the following term:

term sr31337 {
 from {
 source-address {
 10.0.0.0/8;
 11.0.0.0/8;
 }
 destination-address {
 192.168.0.1/32;
 }
 destination-port 80;
 protocol tcp;
 }
 then {
 accept;
 count sr31337;
 }
}

	With the following arguments to acl_script::

	acl_script –modify-specific-term sr31337 –source-address 5.5.5.5 –replace-defined

The following is generated:

term sr31337 {
 from {
 source-address {
 5.5.5.5/32;
 }
 destination-address {
 192.168.0.1/32;
 }
 destination-port 80;
 protocol tcp;
 }
 then {
 accept;
 count sr31337;
 }
}

IOS-like

More on this later!

 Copyright 2006-2013, AOL Inc.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	develop

 	1.3.1

 	1.3

 	1.2.4

 	1.2.3

 	1.2.2

 	1.2.1

 	1.2

 	1.1

 	1.0.0.100

 aclconv - ACL Converter

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Trigger 1.3.1 documentation

 	Command-line Tools

aclconv - ACL Converter

	About

	Usage

	Examples

About

aclconv Convert an ACL on stdin, or a list of ACLs, from one format to another. Input
format is determined automatically. Output format can be given with -f or
with one of -i/-o/-j/-x. The name of the output ACL is determined
automatically, or it can be specified with -n.

Usage

Here is the usage output:

Options:
-h, --help show this help message and exit
-f FORMAT, --format=FORMAT
-o, --ios-named Use IOS named ACL output format
-j, --junos Use JunOS ACL output format
-i, --ios Use IOS old-school ACL output format
-x, --iosxr Use IOS XR ACL output format
-n ACLNAME, --name=ACLNAME

Examples

Coming Soon™.

 Copyright 2006-2013, AOL Inc.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	develop

 	1.3.1

 	1.3

 	1.2.4

 	1.2.3

 	1.2.2

 	1.2.1

 	1.2

 	1.1

 	1.0.0.100

 check_access - ACL Access Checker

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Trigger 1.3.1 documentation

 	Command-line Tools

check_access - ACL Access Checker

	About

	Usage

	Examples

About

check_access determines if access is already in an ACL and if not provides
the output to add.

Usage

Here is the usage signature:

Usage: check_access [opts] file source dest [protocol [port]]

Examples

Let’s start with a simple Cisco extended ACL called acl.abc123 that looks
like this:

% cat acl.abc123
no ip access-list extended abc123
ip access-list extended abc123
!
!!! Permit this network
permit tcp 10.17.18.0 0.0.0.31 any
!
!!! Default deny
deny ip any any

Let’s use the example flow of checking whether http (port 80/tcp) is permitted from
any source to the destination 10.20.30.40 in the policy acl.abc123:

% check_access acl.abc123 any 10.20.30.40 tcp 80
!
!!! Permit this network
permit tcp 10.17.18.0 0.0.0.31 any
! check_access: ADD THIS TERM
permit tcp any host 10.20.30.40 eq 80
!
!!! Default deny
deny ip any any

It adds a comment that says "check_access: ADD THIS TERM", followed by the
policy one would need to add, and where (above the explicit deny).

Now if it were permitted, say if we chose 10.17.18.19 as the source, it
would tell you something different:

% check_access acl.acb123 10.17.18.19 10.20.30.40 tcp 80
!
!!! Permit this network
! check_access: PERMITTED HERE
permit tcp 10.17.18.0 0.0.0.31 any
!
!!! Default deny
deny ip any any
No edits needed.

It adds a comment that says "check_access: PERMITTED HERE", followed by the
policy that matches the flow. Additionally at the end it also reports "No edits needed".

 Copyright 2006-2013, AOL Inc.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	develop

 	1.3.1

 	1.3

 	1.2.4

 	1.2.3

 	1.2.2

 	1.2.1

 	1.2

 	1.1

 	1.0.0.100

 gnng - Display interface information

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Trigger 1.3.1 documentation

 	Command-line Tools

gnng - Display interface information

	About

	Usage

	Examples
	Displaying interfaces for a device

About

gnng Fetches interface information from routing and firewall devices. This
includes network and IP information along with the inbound and outbound filters
that may be applied to the interface. Skips un-numbered and disabled
interfaces by default. Works on Cisco, Foundry, Juniper, and NetScreen devices.

Usage

Here is the usage output:

% gnng -h
Usage: gnng [options] [routers]

GetNets-NG Fetches interface information from routing and firewall devices.
This includes network and IP information along with the inbound and outbound
filters that may be applied to the interface. Skips un-numbered and disabled
interfaces by default. Works on Cisco, Foundry, Juniper, and NetScreen
devices.

Options:
 -h, --help show this help message and exit
 -a, --all run on all devices
 -c, --csv output the data in CSV format instead.
 -d, --include-disabled
 include disabled interfaces.
 -u, --include-unnumbered
 include un-numbered interfaces.
 -j JOBS, --jobs=JOBS maximum simultaneous connections to maintain.
 -N, --nonprod Look for production and non-production devices.
 -s SQLDB, --sqldb=SQLDB
 output to SQLite DB
 --dotty output connect-to information in dotty format.
 --filter-on-group=FILTER_ON_GROUP
 Run on all devices owned by this group
 --filter-on-type=FILTER_ON_TYPE
 Run on all devices with this device type

Examples

Displaying interfaces for a device

To fetch interface information for a device, just provide its hostname as an argument:

% gnng test1-abc.net.aol.com
DEVICE: test1-abc.net.aol.com
Interface | Addresses | Subnets | ACLs IN | ACLs OUT | Description

fe-1/2/1.0 | 10.10.20.38 | 10.10.20.36/30 | | count_all | this is an interface
 | | | | test_filter |
ge-1/1/0.0 | 1.2.148.246 | 1.2.148.244/30 | | filterbad | and so is this
lo0.0 | 10.10.20.253 | 10.10.20.253 | protect | |
 | 10.10.20.193 | 10.10.20.193 | | |

You may specify any number of device hostnames as arguments, or to fetch ALL
devices pass the -a flag.

The rest is fairly self-explanatory.

 Copyright 2006-2013, AOL Inc.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	develop

 	1.3.1

 	1.3

 	1.2.4

 	1.2.3

 	1.2.2

 	1.2.1

 	1.2

 	1.1

 	1.0.0.100

 go - Device connector

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Trigger 1.3.1 documentation

 	Command-line Tools

go - Device connector

	About

	Usage

	Examples
	Caching credentials

	Connecting to devices

	Out-of-band support

	Executing commands upon login

	Troubleshooting
	Authentication failures

	Blank passwords

About

go Go connects to network devices and automatically logs you in using
cached TACACS credentials. It supports telnet, SSHv1/v2.

PLEASE NOTE: go is still named gong (aka “Go NG”) within the
Trigger packaging due to legacy issues with naming conflicts. This will be
changing in the near future.

Usage

Here is the usage output:

% gong
Usage: gong [options] [device]

Automatically log into network devices using cached TACACS credentials.

Options:
 -h, --help show this help message and exit
 -o, --oob Connect to device out of band first.

Examples

Caching credentials

If you haven’t cached your credentials, you’ll be prompted to:

% gong test2-abc
Connecting to test2-abc.net.aol.com. Use ^X to exit.
/home/jathan/.tacacsrc not found, generating a new one!

Updating credentials for device/realm 'tacacsrc'
Username: jathan
Password:
Password (again):

Fetching credentials from /home/jathan/.tacacsrc
test2-abc#

This functionality is provided by Tacacsrc.

Connecting to devices

Using gong is pretty straightforward if you’ve already cached your credentials:

% gong test1-abc
Connecting to test1-abc.net.aol.com. Use ^X to exit.

Fetching credentials from /home/jathan/.tacacsrc
--- JUNOS 10.0S8.2 built 2010-09-07 19:55:32 UTC
jathan@test1-abc>

Full or partial hostname matches are also acceptable:

% gong test2-abc.net.aol.com
Connecting to test2-abc.net.aol.com. Use ^X to exit.

If there are multiple matches, you get to choose:

% gong test1
3 possible matches found for 'test1':
 [1] test1-abc.net.aol.com
 [2] test1-def.net.aol.com
 [3] test1-xyz.net.aol.com
 [0] Exit

Enter a device number: 3
Connecting to test1-xyz.net.aol.com. Use ^X to exit.

If a partial name only has a single match, it will connect automatically:

% gong test1-a
Matched 'test1-abc.net.aol.com'.
Connecting to test1-abc.net.aol.com. Use ^X to exit.

Out-of-band support

If a device has out-of-band (OOB) terminal server and ports specified within
NetDevices, you may telnet to the console by using
the -o flag:

% gong -o test2-abc
OOB Information for test2-abc.net.aol.com
telnet ts-abc.oob.aol.com 1234
Connecting you now...
Trying 10.302.134.584...
Connected to test2-abc.net.aol.com
Escape character is '^]'.

User Access Verification

Username:

Executing commands upon login

You may create a .gorc file in your home directory, in which you may
specify commands to be executed upon login to a device. The commands are
specified by the vendor name. Here is an example:

; .gorc - Example file to show how .gorc would work

[init_commands]
; Specify the commands you would like run upon login for each vendor name. The
; vendor name must match the one found in the CMDB for the manufacturer of the
; hardware. Currently these are:
;
; A10: a10
; Arista: arista
; Brocade: brocade
; Cisco: cisco
; Citrix: citrix
; Dell: dell
; Foundry: foundry
; Juniper: juniper
;
; Format:
;
; vendor:
; command1
; command2
;
juniper:
 request system reboot
 set cli timestamp
 monitor start messages
 show system users

cisco:
 term mon
 who

arista:
 python-shell

foundry:
 show clock

brocade:
 show clock

(You may also find this file at conf/gorc.example within the Trigger source
tree.)

Notice for Juniper one of the commands specified is request system
reboot. This is bad! But don’t worry, only a very limited subset of root
commands are allowed to be specified within the .gorc, and these are:

get
monitor
ping
set
show
term
terminal
traceroute
who
whoami

Any root commands not permitted will be filtered out prior to passing them
along to the device.

Here is an example of what happens when you connect to a Juniper device
with the specified commands in the sample .gorc file displayed above:

% gong test1-abc
Connecting to test1-abc.net.aol.com. Use ^X to exit.

Fetching credentials from /home/jathan/.tacacsrc
--- JUNOS 10.0S8.2 built 2010-09-07 19:55:32 UTC
jathan@test1-abc> set cli timestamp
Mar 28 23:05:38
CLI timestamp set to: %b %d %T

jathan@test1-abc> monitor start messages

jathan@test1-abc> show system users
Jun 28 23:05:39
11:05PM up 365 days, 13:44, 1 user, load averages: 0.09, 0.06, 0.02
USER TTY FROM LOGIN@ IDLE WHAT
jathan p0 awesome.win.aol.com 11:05PM - -cli (cli)

jathan@test1-abc>

Troubleshooting

Authentication failures

If gong fails to connect, it tries to tell you why, and in the event of an
authentication failure it will give you the opportunity to update your stored
credentials:

Fetching credentials from /home/j/jathan/.tacacsrc

Connection failed for the following reason:

'\n\n% Authentication failed.\n\n\nUser Access Verification\n\nUsername:'

Authentication failed, would you like to update your password? (Y/n)

Blank passwords

When initially caching credentials, your password cannot be blank. If you try,
gong complains:

Updating credentials for device/realm 'tacacsrc'
Username: jathan
Password:
Password (again):

Password cannot be blank, try again!

If gong detects a blank password in an existing .tacacsrc file, it will force you to update it:

Missing password for 'aol', initializing...

Updating credentials for device/realm 'aol'
Username [jathan]:

 Copyright 2006-2013, AOL Inc.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	develop

 	1.3.1

 	1.3

 	1.2.4

 	1.2.3

 	1.2.2

 	1.2.1

 	1.2

 	1.1

 	1.0.0.100

 netdev - CLI search for NetDevices

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Trigger 1.3.1 documentation

 	Command-line Tools

netdev - CLI search for NetDevices

	About

	Usage

	Examples
	Displaying an individual device

	Searching by metadata

About

netdev is a command-line search interface for NetDevices metadata.

Usage

Here is the usage output:

% netdev
Usage: netdev [options]

Command-line search interface for 'NetDevices' metdata.

Options:
 --version show program's version number and exit
 -h, --help show this help message and exit
 -a, --acls Search will return acls instead of devices.
 -l <DEVICE>, --list=<DEVICE>
 List all information for individual DEVICE
 -s, --search Perform a search based on matching criteria
 -L <LOCATION>, --location=<LOCATION>
 For use with -s: Match on site location.
 -n <NODENAME>, --nodename=<NODENAME>
 For use with -s: Match on full or partial nodeName.
 NO REGEXP.
 -t <TYPE>, --type=<TYPE>
 For use with -s: Match on deviceType. Must be
 FIREWALL, ROUTER, or SWITCH.
 -o <OWNING TEAM NAME>, --owning-team=<OWNING TEAM NAME>
 For use with -s: Match on Owning Team (owningTeam).
 -O <ONCALL TEAM NAME>, --oncall-team=<ONCALL TEAM NAME>
 For use with -s: Match on Oncall Team (onCallName).
 -C <OWNING ORG>, --owning-org=<OWNING ORG>
 For use with -s: Match on cost center Owning Org.
 (owner).
 -v <VENDOR>, --vendor=<VENDOR>
 For use with -s: Match on canonical vendor name.
 -m <MANUFACTURER>, --manufacturer=<MANUFACTURER>
 For use with -s: Match on manufacturer.
 -b <BUDGET CODE>, --budget-code=<BUDGET CODE>
 For use with -s: Match on budget code
 -B <BUDGET NAME>, --budget-name=<BUDGET NAME>
 For use with -s: Match on budget name
 -k <MAKE>, --make=<MAKE>
 For use with -s: Match on make.
 -M <MODEL>, --model=<MODEL>
 For use with -s: Match on model.
 -N, --nonprod Look for production and non-production devices.

Examples

Displaying an individual device

You may use the -l option to list an individual device:

% netdev -l test1-abc

 Hostname: test1-abc.net.aol.com
 Owning Org.: 12345678 - Network Engineering
 Owning Team: Data Center
 OnCall Team: Data Center

 Vendor: Juniper (JUNIPER)
 Make: M40 INTERNET BACKBONE ROUTER
 Model: M40-B-AC
 Type: ROUTER
 Location: LAB CR10 16ZZ

 Project: Test Lab
 Serial: 987654321
 Asset Tag: 0000012345
 Budget Code: 1234578 (Data Center)

 Admin Status: PRODUCTION
 Lifecycle Status: INSTALLED
 Operation Status: MONITORED
 Last Updated: 2010-07-19 19:56:32.0

Partial names are also ok:

% netdev -l test1
3 possible matches found for 'test1':
 [1] test1-abc.net.aol.com
 [2] test1-def.net.aol.com
 [3] test1-xyz.net.aol.com
 [0] Exit

Enter a device number:

Searching by metadata

To search you must specify the -s flag. All subsequent options are used as search terms. Each of the supported options coincides with attributes found on NetDevice objects.

You must provide at least one optional field or this happens:

% netdev -s
netdev: error: -s needs at least one other option, excluding -l.

Search for all Juniper switches in site “BBQ”:

% netdev -s -t switch -v juniper -L bbq

All search arguments accept partial matches and are case-INsensitive, so this:

% netdev -s --manufacturer='CISCO SYSTEMS' --location=BBQ

Is equivalent to this:

% netdev -s --manufacturer=cisco --location=bbq

You can’t mix -l (list) and -s (search) because they contradict each other:

% netdev -s -l -n test1
Usage: netdev [options]

netdev: error: -l and -s cannot be used together

 Copyright 2006-2013, AOL Inc.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	develop

 	1.3.1

 	1.3

 	1.2.4

 	1.2.3

 	1.2.2

 	1.2.1

 	1.2

 	1.1

 	1.0.0.100

 Configuration and defaults

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Trigger 1.3.1 documentation

Configuration and defaults

This document describes the configuration options available for Trigger.

If you’re using the default loader, you must create or copy the provided
trigger_settings.py module and make sure it is in
/etc/trigger/settings.py on the local system.

	A Word about Defaults
	settings.py

	autoacl()

	Configuration Directives
	Global settings

	Twister settings

	NetDevices settings

	Bounce Window settings

	Redis settings

	Database settings

	Access-list Management settings

	Access-list loading & rate-limiting settings

	On-Call Engineer Display settings

	CM Ticket Creation settings

	Notification settings

A Word about Defaults

There are two Trigger components that rely on Python modules to be provided on
disk in /etc/trigger and these are:

	trigger.acl.autoacl at /etc/trigger/autoacl.py

	trigger.conf at /etc/trigger/settings.py

	trigger.changemgmt.bounce at /etc/trigger/bouncy.py

If your custom configuration either cannot be found or fails to import, Trigger
will fallback to the defaults.

settings.py

Using a custom settings.py

You may override the default location using the TRIGGER_SETTINGS
environment variable.

For example, set this variable and fire up the Python interpreter:

% export TRIGGER_SETTINGS=/home/jathan/sandbox/trigger/conf/trigger_settings.py
% python
Type "help", "copyright", "credits" or "license" for more information.
>>> import os
>>> os.environ.get('TRIGGER_SETTINGS')
'/home/j/jathan/sandbox/netops/trigger/conf/trigger_settings.py'
>>> from trigger.conf import settings

Observe that it doesn’t complain. You have loaded settings.py from a custom
location!

Using global defaults

If you don’t want to specify your own settings.py, it will warn you and
fallback to the defaults:

>>> from trigger.conf import settings
trigger/conf/__init__.py:114: RuntimeWarning: Module could not be imported from /etc/trigger/settings.py. Using default global settings.
 warnings.warn(str(err) + ' Using default global settings.', RuntimeWarning)

autoacl()

The trigger.netdevices and trigger.acl modules require
autoacl().

Trigger wants to import the autoacl() function from
either a module you specify or, failing that, the default location.

Using a custom autoacl()

You may override the default location of the module containing the autoacl()
function using the AUTOACL_FILE environment variable just like how you
specified a custom location for settings.py.

Using default autoacl()

Just as with settings.py, the same goes for autoacl():

>>> from trigger.acl.autoacl import autoacl
trigger/acl/autoacl.py:44: RuntimeWarning: Function autoacl() could not be found in /etc/trigger/autoacl.py, using default!
 warnings.warn(msg, RuntimeWarning)

Keep in mind this autoacl() has the expected
signature but does nothing with the arguments and only returns an empty set:

>>> autoacl('foo')
set([])

Configuration Directives

Global settings

PREFIX

This is where Trigger should look for its essential files including
autoacl.py and netdevices.xml.

Default:

'/etc/trigger'

USE_GPG_AUTH

Toggles whether or not we should use GPG authentication for storing TACACS
credentials in the user’s .tacacsrc file. Set to False to use the old
.tackf encryption method, which sucks but requires almost no overhead.
Should be False unless instructions/integration is ready for GPG. At this
time the documentation for the GPG support is incomplete.

Default:

False

TACACSRC_KEYFILE

Only used if GPG auth is disabled. This is the location of the file that
contains the passphrase used for the two-way hashing of the user credentials
within the .tacacsrc file.

Default:

'/etc/trigger/.tackf'

DEFAULT_REALM

Default login realm to store user credentials (username, password) for general
use within the .tacacsrc file.

Default:

'aol'

FIREWALL_DIR

Location of firewall policy files.

Default:

'/data/firewalls'

TFTPROOT_DIR

Location of the tftproot directory.

Default:

'/data/tftproot'

INTERNAL_NETWORKS

A list of IPy.IP objects describing your internally owned networks. All
network blocsk owned/operated and considered a part of your network should be
included. The defaults are private IPv4 networks defined by RFC 1918.

Default:

[IPy.IP("10.0.0.0/8"), IPy.IP("172.16.0.0/12"), IPy.IP("192.168.0.0/16")]

VENDOR_MAP

New in version 1.2.

A mapping of manufacturer attribute values to canonical vendor name used by
Trigger. These single-word, lowercased canonical names are used throughout
Trigger.

If your internal definition differs from the UPPERCASED ones specified below
(which they probably do, customize them here.

Default:

{
 'A10 NETWORKS': 'a10',
 'ARISTA NETWORKS': 'arista',
 'BROCADE': 'brocade',
 'CISCO SYSTEMS': 'cisco',
 'CITRIX': 'citrix',
 'DELL': 'dell',
 'FOUNDRY': 'foundry',
 'JUNIPER': 'juniper',
 'NETSCREEN TECHNOLOGIES': 'netscreen',
}

SUPPORTED_PLATFORMS

New in version 1.2.

A dictionary keyed by manufacturer name containing a list of the device types
for each that is officially supported by Trigger. Do not modify this unless you
know what you’re doing!

Default:

{
 'a10': ['SWITCH'],
 'arista': ['SWITCH'],
 'brocade': ['ROUTER', 'SWITCH'],
 'cisco': ['ROUTER', 'SWITCH'],
 'citrix': ['SWITCH'],
 'dell': ['SWITCH'],
 'foundry': ['ROUTER', 'SWITCH'],
 'juniper': ['FIREWALL', 'ROUTER', 'SWITCH'],
 'netscreen': ['FIREWALL']
}

SUPPORTED_VENDORS

A tuple of strings containing the names of valid manufacturer names. These are
currently defaulted to what Trigger supports internally. Do not modify this
unless you know what you’re doing!

Default:

('a10', 'arista', 'brocade', 'cisco', 'citrix', 'dell', 'foundry',
'juniper', 'netscreen')

SUPPORTED_TYPES

A tuple of device types officially supported by Trigger. Do not modify this
unless you know what you’re doing!

Default:

('FIREWALL', 'ROUTER', 'SWITCH')

DEFAULT_TYPES

New in version 1.2.

A mapping of of vendor names to the default device type for each in the event
that a device object is created and the deviceType attribute isn’t set for
some reason.

Default:

{
 'a10': 'SWITCH',
 'arista': 'SWITCH',
 'brocade': 'SWITCH',
 'citrix': 'SWITCH',
 'cisco': 'ROUTER',
 'dell': 'SWITCH',
 'foundry': 'SWITCH',
 'juniper': 'ROUTER',
 'netscreen': 'FIREWALL',
}

FALLBACK_TYPE

New in version 1.2.

When a vendor is not explicitly defined within DEFAULT_TYPES, fallback to this type.

Default:

'ROUTER'

Twister settings

These settings are used to customize the timeouts and methods used by Trigger
to connect to network devices.

DEFAULT_TIMEOUT

Default timeout in seconds for commands executed during a session. If a
response is not received within this window, the connection is terminated.

Default:

300

TELNET_TIMEOUT

Default timeout in seconds for initial telnet connections.

Default:

60

TELNET_ENABLED

New in version 1.2.

Whether or not to allow telnet fallback. Set to False to disable support
for telnet.

Default:

True

SSH_PTY_DISABLED

New in version 1.2.

A mapping of vendors to the types of devices for that vendor for which you
would like to disable interactive (pty) SSH sessions, such as when using
bin/gong.

Default:

{
 'dell': ['SWITCH'],
}

SSH_ASYNC_DISABLED

New in version 1.2.

A mapping of vendors to the types of devices for that vendor for which you
would like to disable asynchronous (NON-interactive) SSH sessions, such as when using
execute or Commando to remotely control a
device.

Default:

{
 'arista': ['SWITCH'],
 'brocade': ['SWITCH'],
 'dell': ['SWITCH'],
}

IOSLIKE_VENDORS

A tuple of strings containing the names of vendors that basically just emulate
Cisco’s IOS and can be treated accordingly for the sake of interaction.

Default:

('a10', 'arista', 'brocade', 'cisco', 'dell', 'foundry')

GORC_FILE

The file path where a user’s .gorc is expected to be found.

Default:

'~/.gorc'

GORC_ALLOWED_COMMANDS

The only root commands that are allowed to be executed when defined within a
users’s ~/.gorc file. Any root commands not specified here will be
filtered out by filter_commands().

Default:

'~/.gorc'

NetDevices settings

AUTOACL_FILE

Path to the explicit module file for autoacl.py so that we can still perform
from trigger.acl.autoacl import autoacl without modifying sys.path.

Default:

'/etc/trigger/autoacl.py'

NETDEVICES_FORMAT

Deprecated since version 1.3: Replaced by the NETDEVICES_LOADERS plugin system. This variable
is no longer used in Trigger 1.3 and will be ignored.

One of json, rancid, sqlite, xml. This MUST match the actual
format of NETDEVICES_FILE or it won’t work for obvious reasons.

Please note that RANCID support is experimental. If you use it you must specify
the path to the RANCID directory.

You may override this location by setting the NETDEVICES_FORMAT environment
variable to the format of the file.

Default:

'xml'

NETDEVICES_FILE

Deprecated since version 1.3: Replaced by NETDEVICES_SOURCE. If you are using Trigger 1.3 or
later, please do not define this variable.

Path to netdevices device metadata source file, which is used to populate
NetDevices. This may be JSON, RANCID, a SQLite3 database,
or XML. You must set NETDEVICES_FORMAT to match the type of data.

Please note that RANCID support is experimental. If you use it you must specify
the path to the RANCID directory.

You may override this location by setting the NETDEVICES_FILE environment
variable to the path of the file.

Default:

'/etc/trigger/netdevices.xml'

NETDEVICES_LOADERS

New in version 1.3.

A tuple of data loader classes, specified as strings. Optionally, a tuple can
be used instead of a string. The first item in the tuple should be the Loader’s
module, subsequent items are passed to the Loader during initialization.

Loaders should inherit from BaseLoader. For now,
please see the source code for the pre-defined loader objects at
trigger/netdevices/loaders/filesystem.py for examples.

Default:

(
 'trigger.netdevices.loaders.filesystem.XMLLoader',
 'trigger.netdevices.loaders.filesystem.JSONLoader',
 'trigger.netdevices.loaders.filesystem.SQLiteLoader',
 'trigger.netdevices.loaders.filesystem.CSVLoader',
 'trigger.netdevices.loaders.filesystem.RancidLoader',
)

NETDEVICES_SOURCE

New in version 1.3.

A path or URL to netdevices device metadata source data, which is used to
populate NetDevices with NetDevice
objects. For more information on this, see NETDEVICES_LOADERS.

This value may be as simple as an absolute path to a file on your local system,
or it may be a fully-fledge URL such as
http://user:pass@myhost.com:8080/stuff?foo=bar#fragment-data. This URL data
is parsed and passed onto a BaseLoader subclass
for retrieving device metadata.

You may override this location by setting the NETDEVICES_SOURCE environment
variable to the path of the file.

Default:

'/etc/trigger/netdevices.xml'

RANCID_RECURSE_SUBDIRS

New in version 1.2.

When using RANCID [http://www.shrubbery.net/rancid] as a data source, toggle
whether to treat the RANCID root as a normal instance, or as the root to
multiple instances.

You may override this location by setting the RANCID_RECURSE_SUBDIRS
environment variable to any True value.

Default:

False

VALID_OWNERS

A tuple of strings containing the names of valid owning teams for
NetDevice objects. This is intended to be a master
list of the valid owners to have a central configuration entry to easily
reference. Please see the sample settings file for an example to use in your
environment.

Default:

()

JUNIPER_FULL_COMMIT_FIELDS

Fields and values defined here will dictate which Juniper devices receive a
commit-configuration full when populating
commit_commands. The fields and values must
match the objects exactly or it will fallback to commit-configuration.

Example:

Perform "commit full" on all Juniper EX4200 switches.
JUNIPER_FULL_COMMIT_FIELDS = {
 'deviceType': 'SWITCH',
 'make': 'EX4200',
}

Default

{}

Bounce Window settings

BOUNCE_FILE

New in version 1.3.

The path of the explicit module file containing custom bounce window mappings.
This file is expected to define a bounce() function that takes a
NetDevice object as an argument and returns a
BounceWindow object.

You may override the default location of the module containing the bounce()
function by setting the BOUNCE_FILE environment variable to the path of the
file.

Default:

'/etc/trigger/bounce.py'

BOUNCE_DEFAULT_TZ

New in version 1.3.

The name of the default timezone for bounce windows. Olson zoneinfo names [http://en.wikipedia.org/wiki/Tz_database#Names_of_time_zones] are used for
this in the format of Area/Location. All BounceWindow
objects are configured using “US/Eastern”.

Default:

'US/Eastern'

BOUNCE_DEFAULT_COLOR

New in version 1.3.

The default fallback window color for bounce windows. Must be one of ‘green’,
‘yellow’, or ‘red’.

	green:	Low Risk. Minor impact on user or customer environments. Backing-out
the change, if required, is easily accomplished. User notification is often
unnecessary.

	yellow:	Medium Risk. Potential exists for substantially impacting user or
customer environments. Backing-out the change, if required, can be
accomplished in a reasonable timeframe.

	red:	High Risk. The highest potential impact on users or cutomers. Any
non-standard add, move or change falls into this category. Backing-out of a
high-risk change may be time-consuming or difficult.

Default:

'red'

Redis settings

REDIS_HOST

Redis master server. This will be used unless it is unreachable.

Default:

'127.0.0.1'

REDIS_PORT

The Redis port.

Default:

6379

REDIS_DB

The Redis DB to use.

Default:

0

Database settings

These will eventually be replaced with Redis or another task queue solution
(such as Celery). For now, you’ll need to populate this with information for
your MySQL database.

These are all self-explanatory, I hope.

DATABASE_NAME

The name of the database.

Default:

''

DATABASE_USER

The username to use to connect to the database.

Default:

''

DATABASE_PASSWORD

The password for the user account used to connect to the database.

Default:

''

DATABASE_HOST

The host on which your MySQL databse resides.

Default:

'127.0.0.1'

DATABASE_PORT

The destination port used by MySQL.

Default:

3306

Access-list Management settings

These are various settings that control what files may be modified, by various
tools and libraries within the Trigger suite. These settings are specific to
the functionality found within the trigger.acl module.

IGNORED_ACLS

This is a list of FILTER names of ACLs that should be skipped or ignored by
tools. These should be the names of the filters as they appear on devices. We
want this to be mutable so it can be modified at runtime.

Default:

[]

NONMOD_ACLS

This is a list of FILE names of ACLs that shall not be modified by tools. These
should be the names of the files as they exist in FIREWALL_DIR. Trigger
expects ACLs to be prefixed with 'acl.'.

Default:

[]

VIPS

This is a dictionary mapping of real IP to external NAT IP address for used by
your connecting host(s) (aka jump host). This is used primarily by load_acl
in the event that a connection from a real IP fails (such as via tftp) or when
explicitly passing the --no-vip flag.

Format: {local_ip: external_ip}

Default:

{}

Access-list loading & rate-limiting settings

All of the following esttings are currently only used by load_acl. If and
when the load_acl functionality gets moved into the library API, this may
change.

AUTOLOAD_FILTER

A list of FILTER names (not filenames) that will be skipped during automated
loads (load_acl --auto). This setting was renamed from
AUTOLOAD_BLACKLIST; usage of that name is being phased out.

Default:

[]

AUTOLOAD_FILTER_THRESH

A dictionary mapping for FILTER names (not filenames) and a numeric threshold.
Modify this if you want to create a list that if over the specified number of
devices will be treated as bulk loads.

For now, we provided examples so that this has more context/meaning. The
current implementation is kind of broken and doesn’t scale for data centers
with a large of number of devices.

Default:

{}

AUTOLOAD_BULK_THRESH

Any ACL applied on a number of devices >= this number will be treated as bulk
loads. For example, if this is set to 5, any ACL applied to 5 or more devices
will be considered a bulk ACL load.

Default:

10

BULK_MAX_HITS

This is a dictionary mapping of filter names to the number of bulk hits. Use
this to override BULK_MAX_HITS_DEFAULT. Please note that this number is
used PER EXECUTION of load_acl --auto. For example if you ran it once per
hour, and your bounce window were 3 hours, this number should be the total
number of expected devices per ACL within that allotted bounce window. Yes this
is confusing and needs to be redesigned.)

Examples:

	1 per load_acl execution; ~3 per day, per 3-hour bounce window

	2 per load_acl execution; ~6 per day, per 3-hour bounce window

Format: {'filter_name': max_hits}

Default:

{}

BULK_MAX_HITS_DEFAULT

If an ACL is bulk but not defined in BULK_MAX_HITS, use this number as
max_hits. For example using the default value of 1, that means load on one
device per ACL, per data center or site location, per load_acl --auto
execution.

Default:

1

On-Call Engineer Display settings

GET_CURRENT_ONCALL

This variable should reference a function that returns data for your on-call
engineer, or failing that None. The function should return a dictionary
that looks like this:

{
 'username': 'mrengineer',
 'name': 'Joe Engineer',
 'email': 'joe.engineer@example.notreal'
}

Default:

lambda x=None: x

CM Ticket Creation settings

CREATE_CM_TICKET

This variable should reference a function that creates a CM ticket and returns
the ticket number, or None. It defaults to _create_cm_ticket_stub,
which can be found within the settings.py source code and is a simple
function that takes any arguments and returns None.

Default:

_create_cm_ticket_stub

Notification settings

EMAIL_SENDER

New in version 1.2.2.

The default email sender for email notifications. It’s probably a good idea to
make this a no-reply address.

Default:

'nobody@not.real'

SUCCESS_EMAILS

A list of email addresses to email when things go well (such as from load_acl
--auto).

Default:

[]

FAILURE_EMAILS

A list of email addresses to email when things go not well.

Default:

[]

NOTIFICATION_SENDER

New in version 1.2.2.

The default sender for integrated notifications. This defaults to the
fully-qualified domain name (FQDN) for the local host.

Default:

socket.gethostname()

SUCCESS_RECIPIENTS

New in version 1.2.2.

Destinations (hostnames, addresses) to notify when things go well.

Default:

[]

FAILURE_RECIPIENTS

New in version 1.2.2.

Destinations (hostnames, addresses) to notify when things go not well.

Default:

[]

NOTIFICATION_HANDLERS

New in version 1.2.2.

This is a list of fully-qualified import paths for event handler functions.
Each path should end with a callable that handles a notification event and
returns True in the event of a successful notification, or None.

To activate a handler, add it to this list. Each handler is represented by a
string: the full Python path to the handler’s function name.

Handlers are processed in order. Once an event is succesfully handled, all
processing stops so that each event is only handled once.

Until this documentation improves, for a good example of how to create a
custom handler, review the source code for
email_handler().

Default:

[
 'trigger.utils.notifications.handlers.email_handler',
]

 Copyright 2006-2013, AOL Inc.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	develop

 	1.3.1

 	1.3

 	1.2.4

 	1.2.3

 	1.2.2

 	1.2.1

 	1.2

 	1.1

 	1.0.0.100

 Determine commands to run upon login using .gorc

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Trigger 1.3.1 documentation

Determine commands to run upon login using .gorc

This is used by go - Device connector to execute commands upon login to a
device. A user may specify a list of commands to execute for each vendor. If
the file is not found, or the syntax is bad, no commands will be passed to the
device.

By default, only a very limited subset of root commands are allowed to be
specified within the .gorc. Any root commands not explicitly permitted will
be filtered out prior to passing them along to the device.

The only public interface to this module is get_init_commands.
Given a .gorc That looks like this:

cisco:
 term mon
 terminal length 0
 show clock

This is what is returned:

>>> from trigger import gorc
>>> gorc.get_init_commands('cisco')
['term mon', 'terminal length 0', 'show clock']

You may also pass a list of commands as the init_commands argument to the
connect function (or a NetDevice
object’s method of the same name) to override anything specified in a user’s
.gorc:

>>> from trigger.netdevices import NetDevices
>>> nd = NetDevices()
>>> dev = nd.find('foo1-abc')
>>> dev.connect(init_commands=['show clock', 'exit'])
Connecting to foo1-abc.net.aol.com. Use ^X to exit.

Fetching credentials from /home/jathan/.tacacsrc
foo1-abc#show clock
22:48:24.445 UTC Sat Jun 23 2012
foo1-abc#exit
>>>

For detailed instructions on how to create a .gorc, please see Executing commands upon login.

 Copyright 2006-2013, AOL Inc.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	develop

 	1.3.1

 	1.3

 	1.2.4

 	1.2.3

 	1.2.2

 	1.2.1

 	1.2

 	1.1

 	1.0.0.100

 Working with NetDevices

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Trigger 1.3.1 documentation

Working with NetDevices

NetDevices is the core of Trigger’s device interaction. Anything that
communicates with devices relies on the metadata stored within NetDevice
objects.

	Your Source Data
	A Brief Overview

	Quick Start

	Importing from RANCID

	Supported Formats
	CSV

	XML

	JSON

	RANCID

	SQLite

	Getting Started
	How it works

	Instantiating NetDevices

	What’s in a NetDevice?

	Searching for devices
	Like a dictionary

	Special methods

	Helper function

Your Source Data

Before you can work with device metadata, you must tell Trigger how and from
where to read it. You may either modify the values for these options within
settings.py or you may specify the values as environment variables of the
same name as the configuration options.

Please see Configuration and defaults for more information on how to do this. There
are two configuration options that facilitate this:

	:NETDEVICES_SOURCE:

	A URL or file path from which the metadata may be obtained. This defaults to
/etc/trigger/netdevices.xml, but can be any URL with variables.

	:NETDEVICES_LOADERS:

	(Advanced) A tuple of data loader classes, specified as strings. This is an
advanced setting that you may use to create custom loaders if any of the
default loaders do not meet your needs. More on this later.

A Brief Overview

When you instantiate NetDevices the location specified
NETDEVICES_SOURCE is passed onto the NETDEVICES_LOADERS
to try to parse and return device metadata.

Trigger 1.3 changed the way that NetDevices are
populated, greatly simplifying the whole thing. You no longer have to tell
Trigger what the format of your metadata source is. It tries to determine it
automatically based on whether one of the pre-defined loaders successfully
returns data without throwing an error.

Trigger currently comes with loaders that support the following formats:

	CSV

	JSON

	RANCID

	SQLite

	XML

Except when using CSV or RANCID as a data source, the contents of your source
data should be a dump of relevant metadata fields from your CMDB.

If you don’t have a CMDB, then you’re going to have to populate this file
manually. But you’re a Python programmer, right? So you can come up with
something spiffy!

But first, let’s start simple.

Quick Start

To get started quickly, we recommend you start by creating a simple CSV
file. This will be used to illustrate how easily you can get
going with Trigger.

Importing from RANCID

New in version 1.2.

Basic support for using a RANCID [http://www.shrubbery.net/rancid/]
repository to populate your metadata is now working. We say it’s experimental
because it is not yet complete. Currently all it does for you is populates the
bare minimum set of fields required for basic functionality.

To learn more please visit the section on working with the RANCID format.

Supported Formats

CSV

New in version 1.3.

This method is the most lightweight, but also the most limited. But it’s a
great starting point!

The bare minimum config for CSV is a file populated comma-separated values,
each on their own line with hostname,vendor. For example:

test1-abc.net.aol.com,juniper
test2-abc.net.aol.com,cisco

The most fields you may populate are the same as with the RANCID support.
Please see the explanation of the fields populated by the RANCID format. A “fully-populated” CSV file would look more like this:

test1-abc.net.aol.com,juniper,router
test2-abc.net.aol.com,juniper,router
fw1-xyz.net.aol.com,netscreen,firewall
lab1-switch.net.aol.com,foundry,switch

XML

XML is the slowest method supported by Trigger, but it is currently the default
for legacy reasons. At some point we will switch JSON to the default.

Here is a sample what the netdevices.xml file bundled with the Trigger
source code looks like:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Dummy version of netdevices.xml, with just one real entry modeled from the real file -->
<NetDevices>
 <device nodeName="test1-abc.net.aol.com">
 <adminStatus>PRODUCTION</adminStatus>
 <assetID>0000012345</assetID>
 <authMethod>tacacs</authMethod>
 <barcode>0101010101</barcode>
 <budgetCode>1234578</budgetCode>
 <budgetName>Data Center</budgetName>
 <coordinate>16ZZ</coordinate>
 <deviceType>ROUTER</deviceType>
 <enablePW>boguspassword</enablePW>
 <lastUpdate>2010-07-19 19:56:32.0</lastUpdate>
 <layer2>1</layer2>
 <layer3>1</layer3>
 <layer4>1</layer4>
 <lifecycleStatus>INSTALLED</lifecycleStatus>
 <loginPW></loginPW>
 <make>M40 INTERNET BACKBONE ROUTER</make>
 <manufacturer>JUNIPER</manufacturer>
 <model>M40-B-AC</model>
 <nodeName>test1-abc.net.aol.com</nodeName>
 <onCallEmail>nobody@aol.net</onCallEmail>
 <onCallID>17</onCallID>
 <onCallName>Data Center</onCallName>
 <owningTeam>Data Center</owningTeam>
 <OOBTerminalServerConnector>C</OOBTerminalServerConnector>
 <OOBTerminalServerFQDN>ts1.oob.aol.com</OOBTerminalServerFQDN>
 <OOBTerminalServerNodeName>ts1</OOBTerminalServerNodeName>
 <OOBTerminalServerPort>5</OOBTerminalServerPort>
 <OOBTerminalServerTCPPort>5005</OOBTerminalServerTCPPort>
 <operationStatus>MONITORED</operationStatus>
 <owner>12345678 - Network Engineering</owner>
 <projectName>Test Lab</projectName>
 <room>CR10</room>
 <serialNumber>987654321</serialNumber>
 <site>LAB</site>
 </device>
 ...
</NetDevices>

Please see conf/netdevices.xml within the Trigger source distribution for a
full example.

JSON

JSON is the fastest method supported by Trigger. This is especially the case if
you utilize the optional C extension of simplejson. The file can be minified and does
not need to be indented.

Here is a sample of what the netdevices.json file bundled with the Trigger
source code looks like (pretty-printed for readabilty):

[
 {
 "adminStatus": "PRODUCTION",
 "enablePW": "boguspassword",
 "OOBTerminalServerTCPPort": "5005",
 "assetID": "0000012345",
 "OOBTerminalServerNodeName": "ts1",
 "onCallEmail": "nobody@aol.net",
 "onCallID": "17",
 "OOBTerminalServerFQDN": "ts1.oob.aol.com",
 "owner": "12345678 - Network Engineering",
 "OOBTerminalServerPort": "5",
 "onCallName": "Data Center",
 "nodeName": "test1-abc.net.aol.com",
 "make": "M40 INTERNET BACKBONE ROUTER",
 "budgetCode": "1234578",
 "budgetName": "Data Center",
 "operationStatus": "MONITORED",
 "deviceType": "ROUTER",
 "lastUpdate": "2010-07-19 19:56:32.0",
 "authMethod": "tacacs",
 "projectName": "Test Lab",
 "barcode": "0101010101",
 "site": "LAB",
 "loginPW": null,
 "lifecycleStatus": "INSTALLED",
 "manufacturer": "JUNIPER",
 "layer3": "1",
 "layer2": "1",
 "room": "CR10",
 "layer4": "1",
 "serialNumber": "987654321",
 "owningTeam": "Data Center",
 "coordinate": "16ZZ",
 "model": "M40-B-AC",
 "OOBTerminalServerConnector": "C"
 },
 ...
]

To use JSON, create your NETDEVICES_SOURCE file full of objects that
look like the one above.

Please see conf/netdevices.json within the Trigger source distribution for
a full example.

RANCID

This is the easiest method to get running assuming you’ve already got a RANCID
instance to leverage. At this time, however, the metadata available from RANCID
is very limited and populates only the following fields for each
Netdevice object:

	nodeName:	The device hostname.

	manufacturer:	The representative name of the hardware manufacturer. This is also used to
dynamically populate the vendor attribute on the device object

	vendor:	The canonical vendor name used internally by Trigger. This will always be a
single, lowercased word, and is automatically set when a device object is
created.

	deviceType:	One of (‘SWITCH’, ‘ROUTER’, ‘FIREWALL’). This is currently a hard-coded
value for each manufacturer.

	adminStatus:	If RANCID says the device is 'up', then this is set to
'PRODUCTION'; otherwise it’s set to 'NON-PRODUCTION'.

The support for RANCID comes in two forms: single or multiple instance.

Single instance is the default and expects to find the router.db file and
the configs directory in the root directory you specify.

Multiple instance will instead walk the root directory and expect to find
router.db and configs in each subdirectory it finds. Multiple instance
can be toggled by seting the value of RANCID_RECURSE_SUBDIRS to
True to your settings.py.

To use RANCID as a data source, set the value of NETDEVICES_SOURCE in
settings.py to the absolute path of location of of the root directory where
your RANCID data is stored.

Note

Make sure that the value of RANCID_RECURSE_SUBDIRS matches the RANCID
method you are using. This setting defaults to False, so if you only
have a single RANCID instance, there is no need to add it to your
settings.py.

Lastly, to illustrate what a NetDevice object that has
been populated by RANCID looks like, here is the output of .dump():

Hostname: test1-abc.net.aol.com
Owning Org.: None
Owning Team: None
OnCall Team: None

Vendor: Juniper (juniper)
Make: None
Model: None
Type: ROUTER
Location: None None None

Project: None
Serial: None
Asset Tag: None
Budget Code: None (None)

Admin Status: PRODUCTION
Lifecycle Status: None
Operation Status: None
Last Updated: None

Compare that to what a device dump looks like when fully populated from CMDB
metadata in What’s in a NetDevice?. It’s important to keep this in mind, because
if you want to do device associations using any of the unpopulated fields,
you’re gonna have a bad time. This is subject to change as RANCID support
evolves, but this is the way it is for now.

SQLite

SQLite is somewhere between JSON and XML as far as performance, but also comes
with the added benefit that support is built into Python, and you get a real
database file you can leverage in other ways outside of Trigger.

--
-- Table structure for table `netdevices`
--
-- This is for 'netdevices.sql' SQLite support within
-- trigger.netdevices.NetDevices for storing and tracking network device
-- metadata.
--
-- This is based on the current set of existing attributes in use and is by no
-- means exclusive. Feel free to add your own fields to suit your environment.
--

CREATE TABLE netdevices (
 id INTEGER PRIMARY KEY,
 OOBTerminalServerConnector VARCHAR(1024),
 OOBTerminalServerFQDN VARCHAR(1024),
 OOBTerminalServerNodeName VARCHAR(1024),
 OOBTerminalServerPort VARCHAR(1024),
 OOBTerminalServerTCPPort VARCHAR(1024),
 acls VARCHAR(1024),
 adminStatus VARCHAR(1024),
 assetID VARCHAR(1024),
 authMethod VARCHAR(1024),
 barcode VARCHAR(1024),
 budgetCode VARCHAR(1024),
 budgetName VARCHAR(1024),
 bulk_acls VARCHAR(1024),
 connectProtocol VARCHAR(1024),
 coordinate VARCHAR(1024),
 deviceType VARCHAR(1024),
 enablePW VARCHAR(1024),
 explicit_acls VARCHAR(1024),
 gslb_master VARCHAR(1024),
 implicit_acls VARCHAR(1024),
 lastUpdate VARCHAR(1024),
 layer2 VARCHAR(1024),
 layer3 VARCHAR(1024),
 layer4 VARCHAR(1024),
 lifecycleStatus VARCHAR(1024),
 loginPW VARCHAR(1024),
 make VARCHAR(1024),
 manufacturer VARCHAR(1024),
 model VARCHAR(1024),
 nodeName VARCHAR(1024),
 onCallEmail VARCHAR(1024),
 onCallID VARCHAR(1024),
 onCallName VARCHAR(1024),
 operationStatus VARCHAR(1024),
 owner VARCHAR(1024),
 owningTeam VARCHAR(1024),
 projectID VARCHAR(1024),
 projectName VARCHAR(1024),
 room VARCHAR(1024),
 serialNumber VARCHAR(1024),
 site VARCHAR(1024)
);

To use SQLite, create a database using the schema provided within Trigger
source distribution at conf/netdevices.sql. You will need to populate the
database full of rows with the columns above and set
NETDEVICES_SOURCE the absolute path of the database file.

Getting Started

First things first, you must instantiate NetDevices. It
has three things it requires before you can properly do this:

Note

If you do not want to load ACL associations you may skip them by passing
with_acls=False to NetDevices and then you only need
to satisfy the first requirement. A this time it is not possible to
globally disable ACL support, so this will only work for the purpose of
this walkthrough or when you manually instantiate NetDevices objects.

	The NETDEVICES_SOURCE file must be readable and must properly
parse using one of the default loaders formats supported in
NETDEVICES_LOADERS (see above);

	An instance of Redis (you may skip this by passing with_acls=False
to the NetDevices constructor).

	The path to autoacl.py must be valid, and must properly parse (you
may skip this if you just want to ignore the warnings for now).

How it works

The NetDevices object itself is an immutable,
dictionary-like Singleton [http://en.wikipedia.org/wiki/Singleton_pattern] object. If you don’t know what a Singleton is, it
means that there can only be one instance of this object in any program. The
actual instance object itself an instance of the inner
_actual class which is stored in the
module object as NetDevices._Singleton. This is done as a performance boost
because many Trigger components require a NetDevices instance, and if we had to
keep creating new ones, we’d be waiting each time one had to parse
NETDEVICES_SOURCE all over again.

Upon startup, each device object/element/row found within
NETDEVICES_SOURCE is used to create a
NetDevice object. This object pulls in ACL associations
from AclsDB.

The Singleton Pattern

The NetDevices module object has a _Singleton attribute that defaults to None.
Upon creating an instance, this is populated with the
_actual instance:

>>> nd = NetDevices()
>>> nd._Singleton
<trigger.netdevices._actual object at 0x2ae3dcf48710>
>>> NetDevices._Singleton
<trigger.netdevices._actual object at 0x2ae3dcf48710>

This is how new instances are prevented. Whenever you create a new reference by
instantiating NetDevices again, what you are really doing is creating a reference
to NetDevices._Singleton:

>>> other_nd = NetDevices()
>>> other_nd._Singleton
<trigger.netdevices._actual object at 0x2ae3dcf48710>
>>> nd._Singleton is other_nd._Singleton
True

The only time this would be an issue is if you needed to change the actual contents
of your object (such as when debugging or passing production_only=False).
If you need to do this, set the value to None:

>>> NetDevices._Singleton = None

Then the next call to NetDevices() will start from scratch. Keep in mind
because of this pattern it is not easy to have more than one instance (there are
ways but we’re not going to list them here!). All existing instances will
inherit the value of NetDevices._Singleton:

>>> third_nd = NetDevices(production_only=False)
>>> third_nd._Singleton
<trigger.netdevices._actual object at 0x2ae3dcf506d0>
>>> nd._Singleton
<trigger.netdevices._actual object at 0x2ae3dcf506d0>
>>> third_nd._Singleton is nd._Singleton
True

Instantiating NetDevices

Throughout the Trigger code, the convention when instantiating and referencing a
NetDevices instance, is to assign it to the variable
nd. All examples will use this, so keep that in mind:

>>> from trigger.netdevices import NetDevices
>>> nd = NetDevices()
>>> len(nd)
3

By default, this only includes any devices for which adminStatus (aka
administrative status) is PRODUCTION. This means that the device is used
in your production environment. If you would like you get all devices regardless
of adminStatus, you must pass production_only=False to the constructor:

>>> from trigger.netdevices import NetDevices
>>> nd = NetDevices(production_only=False)
>>> len(nd)
4

The included sample metadata files contains one device that is marked as
NON-PRODUCTION.

What’s in a NetDevice?

A NetDevice object has a number of attributes you can use
creatively to correlate
or identify them:

>>> dev = nd.find('test1-abc')
>>> dev
<NetDevice: test1-abc.net.aol.com>

Printing it displays the hostname:

>>> print dev
test1-abc.net.aol.com

You can dump the values:

>>> dev.dump()

 Hostname: test1-abc.net.aol.com
 Owning Org.: 12345678 - Network Engineering
 Owning Team: Data Center
 OnCall Team: Data Center

 Vendor: Juniper (JUNIPER)
 Make: M40 INTERNET BACKBONE ROUTER
 Model: M40-B-AC
 Type: ROUTER
 Location: LAB CR10 16ZZ

 Project: Test Lab
 Serial: 987654321
 Asset Tag: 0000012345
 Budget Code: 1234578 (Data Center)

 Admin Status: PRODUCTION
 Lifecycle Status: INSTALLED
 Operation Status: MONITORED
 Last Updated: 2010-07-19 19:56:32.0

You can reference them as attributes:

>>> dev.nodeName, dev.vendor, dev.deviceType
('test1-abc.net.aol.com', <Vendor: Juniper>, 'ROUTER')

There are some special methods to perform identity tests:

>>> dev.is_router(), dev.is_switch(), dev.is_firewall()
(True, False, False)

You can view the ACLs assigned to the device:

Note

If you have passed with_acls=False, none of these attributes will be
populated and will instead return an empty set()).

>>> dev.explicit_acls
set(['abc123'])
>>> dev.implicit_acls
set(['juniper-router.policer', 'juniper-router-protect'])
>>> dev.acls
set(['juniper-router.policer', 'juniper-router-protect', 'abc123'])

Or get the next time it’s ok to make changes to this device (more on this
later):

>>> dev.bounce.next_ok('green')
datetime.datetime(2011, 7, 13, 9, 0, tzinfo=<UTC>)
>>> print dev.bounce.status()
red

Searching for devices

Like a dictionary

Since the object is like a dictionary, you may reference devices as keys by
their hostnames:

>>> nd
{'test2-abc.net.aol.com': <NetDevice: test2-abc.net.aol.com>,
 'test1-abc.net.aol.com': <NetDevice: test1-abc.net.aol.com>,
 'lab1-switch.net.aol.com': <NetDevice: lab1-switch.net.aol.com>,
 'fw1-xyz.net.aol.com': <NetDevice: fw1-xyz.net.aol.com>}
>>> nd['test1-abc.net.aol.com']
<NetDevice: test1-abc.net.aol.com>

You may also perform any other operations to iterate devices as you would with
a dictionary (.keys(), .itervalues(), etc.).

Special methods

There are a number of ways you can search for devices. In all cases, you are
returned a list.

The simplest usage is just to list all devices:

>>> nd.all()
[<NetDevice: test2-abc.net.aol.com>, <NetDevice: test1-abc.net.aol.com>,
 <NetDevice: lab1-switch.net.aol.com>, <NetDevice: fw1-xyz.net.aol.com>]

Using all() is going to be very rare, as you’re more likely to work with a
subset of your
devices.

Find a device by its shortname (minus the domain):

>>> nd.find('test1-abc')
<NetDevice: test1-abc.net.aol.com>

List devices by type (switches, routers, or firewalls):

>>> nd.list_routers()
[<NetDevice: test2-abc.net.aol.com>, <NetDevice: test1-abc.net.aol.com>]
>>> nd.list_switches()
[<NetDevice: lab1-switch.net.aol.com>]
>>> nd.list_firewalls()
[<NetDevice: fw1-xyz.net.aol.com>]

Perform a case-sensitive search on any field (it defaults to nodeName):

>>> nd.search('test')
[<NetDevice: test2-abc.net.aol.com>, <NetDevice: test1-abc.net.aol.com>]
>>> nd.search('test2')
[<NetDevice: test2-abc.net.aol.com>]
>>> nd.search('NON-PRODUCTION', 'adminStatus')
[<NetDevice: test2-abc.net.aol.com>]

Or you could just roll your own list comprehension to do the same thing:

>>> [d for d in nd.all() if d.adminStatus == 'NON-PRODUCTION']
[<NetDevice: test2-abc.net.aol.com>]

Perform a case-INsenstive search on any number of fields as keyword arguments:

>>> nd.match(oncallname='data center', adminstatus='non')
[<NetDevice: test2-abc.net.aol.com>]
>>> nd.match(vendor='netscreen')
[<NetDevice: fw1-xyz.net.aol.com>]

Helper function

Another nifty tool within the module is device_match,
which returns a NetDevice object:

>>> from trigger.netdevices import device_match
>>> device_match('test')
2 possible matches found for 'test':
 [1] test1-abc.net.aol.com
 [2] test2-abc.net.aol.com
 [0] Exit

Enter a device number: 2
<NetDevice: test2-abc.net.aol.com>

If there are multiple matches, it presents a prompt and lets you choose,
otherwise it chooses for you:

>>> device_match('fw')
Matched 'fw1-xyz.net.aol.com'.
<NetDevice: fw1-xyz.net.aol.com>

 Copyright 2006-2013, AOL Inc.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	develop

 	1.3.1

 	1.3

 	1.2.4

 	1.2.3

 	1.2.2

 	1.2.1

 	1.2

 	1.1

 	1.0.0.100

 Managing Credentials with .tacacsrc

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Trigger 1.3.1 documentation

Managing Credentials with .tacacsrc

About

The tacacsrc module provides an abstract interface to the management
and storage of user credentials in the .tacacsrc file. This is used
throughout Trigger to automatically retrieve credentials for a user whenever
they connect to devices.

How it works

The Tacacsrc class is the core interface for encrypting
credentials when they are stored, and decrypting the credentials when they are
retrieved. A unique .tacacsrc file is stored in each user’s home directory,
and is forcefully set to be readable only (permissions: 0400) by the owning user.

There are two implementations, the first of which is the only one that is
officially supported at this time, and which is properly documented.

	Shared key encryption

This method is the default. It relies on a shared key to be stored in a file
somewhere on the system. The location of this file can be customized in
settings.py using TACACSRC_KEYFILE.

This method has a glaring security flaw in that anyone who discerns the
location of the keyfile can see the passphrase used for the encryption. This
risk is mitigated somewhat by ensuring that each user’s .tacacsrc has
strict file permissions.

	GPG encryption

This method is experimental but is intended to be the long-term replacement
for the shared key method. To enable GPG encryption, set
USE_GPG_AUTH to True within settings.py.

This method is very secure because there is no centralized passphrase used
for encryption. Each user chooses their own.

Usage

Creating a .tacacsrc

When you create an instance of Tacacsrc, it will try to
read the .tacacsrc file. If this file is not found, or cannot be properly
parsed, it will be initialized:

>>> from trigger import tacacsrc
>>> tcrc = tacacsrc.Tacacsrc()
/home/jathan/.tacacsrc not found, generating a new one!

Updating credentials for device/realm 'tacacsrc'
Username: jathan
Password:
Password (again):

If you inspect the .tacacsrc file, you’ll see that both the username and
password are encrypted:

% cat ~/.tacacsrc
Saved by trigger.tacacsrc at 2012-06-23 11:38:51 PDT

aol_uname_ = uiXq7eHEq2A=
aol_pwd_ = GUpzkuFJfN8=

Retrieving stored credentials

Credentials can be cached by realm. By default this realm is 'aol', but you
can change that in settings.py using DEFAULT_REALM. Credentials
are stored as a dictionary under the .creds attribute, keyed by the realm
for each set of credentials:

>>> tcrc.creds
{'aol': Credentials(username='jathan', password='boguspassword', realm='aol')}

There is also a module-level function,
get_device_password(), that takes a realm name as an
argument, which will instantiate Tacacsrc for you and
returns the credentials for the realm:

>>> tacacsrc.get_device_password('aol')
Credentials(username='jathan', password='boguspassword', realm='aol')

Updating stored credentials

The module-level function update_credentials() will prompt
a user to update their stored credentials. It expects the realm key you would
like to update and an optional username you would like to use. If you don’t
specify a user, the existing username for the realm is kept.

>>> tacacsrc.update_credentials('aol')

Updating credentials for device/realm 'aol'
Username [jathan]:
Password:
Password (again):

Credentials updated for user: 'jathan', device/realm: 'aol'.
True
>>> tcrc.creds
{'aol': Credentials(username='jathan', password='panda', realm='aol')}

This function will return True upon a successful update to .tacacsrc.

Using GPG encryption

EXPERIMENTAL! PROCEED AT YOUR OWN RISK!! FEEDBACK WELCOME!!

Before you proceed, you must make sure to have gpg2 and gpg-agent installed on
your system.

Enabling GPG

In settings.py set USE_GPG_AUTH to True.

Generating your GPG key

Execute:

gpg2 --gen-key

When asked fill these in with the values appropriate for you:

Real name: jathan
Email address: jathan.mccollum@teamaol.com
Comment: Jathan McCollum

It will confirm:

You selected this USER-ID:
 "jathan (Jathan McCollum) <jathan@marduk.itsec.aol.com>"

Here is a snippet to try and make this part of the core API, but is not yet
implemented:

>>> import os, pwd, socket
>>> pwd.getpwnam(os.getlogin()).pw_gecos
'Jathan McCollum'
>>> socket.gethostname()
'wtfpwn.bogus.aol.com'
>>> h = socket.gethostname()
>>> u = os.getlogin()
>>> n = pwd.getpwnam(u).pw_gecos
>>> e = '%s@%s' % (u,h)
>>> print '%s (%s) <%s>' % (u,n,e)
jathan (Jathan McCollum) <jathan@wtfpwn.bogus.aol.com'

Convert your tacacsrc to GPG

Assuming you already have a “legacy” .tacacsrc file, execute:

tacacsrc2gpg.py

It will want to generate your GPG key. This can take a VERY LONG time. We need a
workaround for this.

And then it outputs:

This will overwrite your .tacacsrc.gpg and all gnupg configuration, are you sure? (y/N)
Would you like to convert your OLD tacacsrc configuration file to your new one? (y/N)
Converting old tacacsrc to new kind :)
OLD
/opt/bcs/packages/python-modules-2.0/lib/python/site-packages/simian/tacacsrc.py:125: DeprecationWarning: os.popen2 is deprecated. Use the subprocess module.
 (fin,fout) = os.popen2('gpg2 --yes --quiet -r %s -e -o %s' % (self.username, self.file_name))

Update your gpg.conf

Trigger should also do this for us, but alas...

Add 'use-agent' to ~/.gnupg/gpg.conf:

echo 'use-agent\n' > .gnupg/gpg.conf

This will allow you to unlock your GPG store at the beginning of the day, and
have the gpg-agent broker the communication encryption/decryption of the file
for 24 hours.

See if it works

	Connect to a device.

	It will prompt for passphrase

	...and connected! (aka Profit)

Other utilities

You may check if a user has a GPG-enabled credential store:

>>> from trigger import tacacsrc
>>> tcrc = tacacsrc.Tacacsrc()
>>> tcrc.user_has_gpg()
False

Convert .tacacsrc to .tacacsrc.gpg:

>>> tacacsrc.convert_tacacsrc()

 Copyright 2006-2013, AOL Inc.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	develop

 	1.3.1

 	1.3

 	1.2.4

 	1.2.3

 	1.2.2

 	1.2.1

 	1.2

 	1.1

 	1.0.0.100

 trigger.acl — ACL parsing library

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Trigger 1.3.1 documentation

trigger.acl — ACL parsing library

Trigger’s ACL parser.

This library contains various modules that allow for parsing, manipulation,
and management of network access control lists (ACLs). It will parse a complete
ACL and return an ACL object that can be easily translated to any supported
vendor syntax.

	
trigger.acl.parse(input_data)

	Parse a complete ACL and return an ACL object. This should be the only
external interface to the parser.

>>> from trigger.acl import parse
>>> aclobj = parse("access-list 123 permit tcp any host 10.20.30.40 eq 80")
>>> aclobj.terms
[<Term: None>]

	Parameters:	input_data – An ACL policy as a string or file-like object.

	
class trigger.acl.ACL(name=None, terms=None, format=None, family=None)

	An abstract access-list object intended to be created by the parse()
function.

	
name_terms()

	Assign names to all unnamed terms.

	
output(format=None, *largs, **kwargs)

	Output the ACL data in the specified format.

	
output_ios(replace=False)

	Output the ACL in IOS traditional format.

	Parameters:	replace – If set the ACL is preceded by a no access-list line.

	
output_ios_brocade(replace=False, receive_acl=False)

	Output the ACL in Brocade-flavored IOS format.

The difference between this and “traditional” IOS are:

	Stripping of comments

	Appending of ip rebind-acl or ip rebind-receive-acl line

	Parameters:	
	replace – If set the ACL is preceded by a no access-list line.

	receive_acl – If set the ACL is suffixed with a ip
rebind-receive-acl' instead of ``ip rebind-acl.

	
output_ios_named(replace=False)

	Output the ACL in IOS named format.

	Parameters:	replace – If set the ACL is preceded by a no access-list line.

	
output_iosxr(replace=False)

	Output the ACL in IOS XR format.

	Parameters:	replace – If set the ACL is preceded by a no ipv4 access-list line.

	
output_junos(replace=False, family=None)

	Output the ACL in JunOS format.

	Parameters:	
	replace – If set the ACL is wrapped in a
firewall { replace: ... } section.

	family – If set, the value is used to wrap the ACL in a
family inet { ...} section.

	
strip_comments()

	Strips all comments from ACL header and all terms.

trigger.acl.autoacl

This module controls when ACLs get auto-applied to network devices,
in addition to what is specified in acls.db.

This is primarily used by AclsDB to populate the
implicit ACL-to-device mappings.

No changes should be made to this module. You must specify the path to the
autoacl logic inside of settings.py as AUTOACL_FILE. This will be
exported as autoacl so that the module path for the autoacl()
function will still be trigger.autoacl.autoacl().

This trickery allows us to keep the business-logic for how ACLs are mapped to
devices out of the Trigger packaging.

If you do not specify a location for AUTOACL_FILE or the module cannot be
loaded, then a default autoacl() function ill be used.

	
trigger.acl.autoacl.autoacl(dev, explicit_acls=None)

	Given a NetDevice object, returns a set of implicit (auto) ACLs. We
require a device object so that we don’t have circular dependencies
between netdevices and autoacl.

This function MUST return a set() of acl names or you will break
the ACL associations. An empty set is fine, but it must be a set!

	Parameters:	
	dev – A NetDevice object.

	explicit_acls – A set containing names of ACLs. Default: set()

>>> dev = nd.find('test1-abc')
>>> dev.vendor
<Vendor: Juniper>
>>> autoacl(dev)
set(['juniper-router-protect', 'juniper-router.policer'])

NOTE: If the default function is returned it does nothing with the
arguments and always returns an empty set.

trigger.acl.db

Redis-based replacement of the legacy acls.db file. This is used for
interfacing with the explicit and automatic ACL-to-device mappings.

>>> from trigger.netdevices import NetDevices
>>> from trigger.acl.db import AclsDB
>>> nd = NetDevices()
>>> dev = nd.find('test1-abc')
>>> a = AclsDB()
>>> a.get_acl_set(dev)
set(['juniper-router.policer', 'juniper-router-protect', 'abc123'])
>>> a.get_acl_set(dev, 'explicit')
set(['abc123'])
>>> a.get_acl_set(dev, 'implicit')
set(['juniper-router.policer', 'juniper-router-protect'])
>>> a.get_acl_dict(dev)
{'all': set(['abc123', 'juniper-router-protect', 'juniper-router.policer']),
 'explicit': set(['abc123']),
 'implicit': set(['juniper-router-protect', 'juniper-router.policer'])}

	
trigger.acl.db.get_matching_acls(wanted, exact=True, match_acl=True, match_device=False, nd=None)

	Return a sorted list of the names of devices that have at least one
of the wanted ACLs, and the ACLs that matched on each. Without ‘exact’,
match ACL name by startswith.

To get a list of devices, matching the ACLs specified:

>>> adb.get_matching_acls(['abc123'])
[('fw1-xyz.net.aol.com', ['abc123']), ('test1-abc.net.aol.com', ['abc123'])]

To get a list of ACLS matching the devices specified using an explicit
match (default) by setting match_device=True:

>>> adb.get_matching_acls(['test1-abc'], match_device=True)
[]
>>> adb.get_matching_acls(['test1-abc.net.aol.com'], match_device=True)
[('test1-abc.net.aol.com', ['abc123', 'juniper-router-protect',
'juniper-router.policer'])]

To get a list of ACLS matching the devices specified using a partial
match. Not how it returns all devices starting with ‘test1-mtc’:

>>> adb.get_matching_acls(['test1-abc'], match_device=True, exact=False)
[('test1-abc.net.aol.com', ['abc123', 'juniper-router-protect',
'juniper-router.policer'])]

	
trigger.acl.db.get_all_acls(nd=None)

	Returns a dict keyed by acl names whose containing a set of NetDevices
objects to which each acl is applied.

@nd can be your own NetDevices object if one is not supplied already

>>> all_acls = get_all_acls()
>>> all_acls['abc123']
set([<NetDevice: test1-abc.net.aol.com>, <NetDevice: fw1-xyz.net.aol.com>])

	
trigger.acl.db.get_bulk_acls(nd=None)

	Returns a set of acls with an applied count over
settings.AUTOLOAD_BULK_THRESH.

	
trigger.acl.db.populate_bulk_acls(nd=None)

	Given a NetDevices instance, Adds bulk_acls attribute to NetDevice objects.

	
class trigger.acl.db.AclsDB

	Container for ACL operations.

add/remove operations are for explicit associations only.

	
add_acl(device, acl)

	Add explicit acl to device

>>> dev = nd.find('test1-mtc')
>>> a.add_acl(dev, 'acb123')
'added acl abc123 to test1-mtc.net.aol.com'

	
get_acl_dict(device)

	Returns a dict of acl mappings for a @device, which is expected to
be a NetDevice object.

>>> a.get_acl_dict(dev)
{'all': set(['115j', 'protectRE', 'protectRE.policer', 'test-bluej',
'testgreenj', 'testops_blockmj']),
'explicit': set(['test-bluej', 'testgreenj', 'testops_blockmj']),
'implicit': set(['115j', 'protectRE', 'protectRE.policer'])}

	
get_acl_set(device, acl_set='all')

	Return an acl set matching @acl_set for a given device. Match can be
one of [‘all’, ‘explicit’, ‘implicit’]. Defaults to ‘all’.

>>> a.get_acl_set(dev)
set(['testops_blockmj', 'testgreenj', '115j', 'protectRE',
'protectRE.policer', 'test-bluej'])
>>> a.get_acl_set(dev, 'explicit')
set(['testops_blockmj', 'test-bluej', 'testgreenj'])
>>> a.get_acl_set(dev, 'implicit')
set(['protectRE', 'protectRE.policer', '115j'])

	
remove_acl(device, acl)

	Remove explicit acl from device.

>>> a.remove_acl(dev, 'acb123')
'removed acl abc123 from test1-mtc.net.aol.com'

trigger.acl.parser

Parse and manipulate network access control lists.

This library doesn’t completely follow the border of the valid/invalid ACL
set, which is determined by multiple vendors and not completely documented
by any of them. We could asymptotically approach that with an enormous
amount of testing, although it would require a ‘flavor’ flag (vendor,
router model, software version) for full support. The realistic goal
is to catch all the errors that we see in practice, and to accept all
the ACLs that we use in practice, rather than to try to reject every
invalid ACL and accept every valid ACL.

>>> from trigger.acl import parse
>>> aclobj = parse("access-list 123 permit tcp any host 10.20.30.40 eq 80")
>>> aclobj.terms
[<Term: None>]

	
trigger.acl.parser.parse(input_data)

	Parse a complete ACL and return an ACL object. This should be the only
external interface to the parser.

>>> from trigger.acl import parse
>>> aclobj = parse("access-list 123 permit tcp any host 10.20.30.40 eq 80")
>>> aclobj.terms
[<Term: None>]

	Parameters:	input_data – An ACL policy as a string or file-like object.

	
class trigger.acl.parser.Comment(data)

	Container for inline comments.

	
output_ios()

	Output the Comment to IOS traditional format.

	
output_ios_named()

	Output the Comment to IOS named format.

	
output_iosxr()

	Output the Comment to IOS XR format.

	
output_junos()

	Output the Comment to JunOS format.

	
class trigger.acl.parser.Term(name=None, action='accept', match=None, modifiers=None, inactive=False, isglobal=False, extra=None)

	An individual term from which an ACL is made

	
output(format, *largs, **kwargs)

	Output the term to the specified format

	Parameters:	format – The desired output format.

	
output_ios(prefix=None, acl_name=None)

	Output term to IOS traditional format.

	Parameters:	
	prefix – Prefix to use, default: ‘access-list’

	acl_name – Name of access-list to display

	
output_ios_named(prefix='', *args, **kwargs)

	Output term to IOS named format.

	
output_iosxr(prefix='', *args, **kwargs)

	Output term to IOS XR format.

	
output_junos(*args, **kwargs)

	Convert the term to JunOS format.

	
set_action_or_modifier(action)

	Add or replace a modifier, or set the primary action. This method exists
for the convenience of parsers.

	
class trigger.acl.parser.Protocol(arg)

	A protocol object used for access membership tests in Term objects.
Acts like an integer, but stringify into a name if possible.

	
class trigger.acl.parser.ACL(name=None, terms=None, format=None, family=None)

	An abstract access-list object intended to be created by the parse()
function.

	
name_terms()

	Assign names to all unnamed terms.

	
output(format=None, *largs, **kwargs)

	Output the ACL data in the specified format.

	
output_ios(replace=False)

	Output the ACL in IOS traditional format.

	Parameters:	replace – If set the ACL is preceded by a no access-list line.

	
output_ios_brocade(replace=False, receive_acl=False)

	Output the ACL in Brocade-flavored IOS format.

The difference between this and “traditional” IOS are:

	Stripping of comments

	Appending of ip rebind-acl or ip rebind-receive-acl line

	Parameters:	
	replace – If set the ACL is preceded by a no access-list line.

	receive_acl – If set the ACL is suffixed with a ip
rebind-receive-acl' instead of ``ip rebind-acl.

	
output_ios_named(replace=False)

	Output the ACL in IOS named format.

	Parameters:	replace – If set the ACL is preceded by a no access-list line.

	
output_iosxr(replace=False)

	Output the ACL in IOS XR format.

	Parameters:	replace – If set the ACL is preceded by a no ipv4 access-list line.

	
output_junos(replace=False, family=None)

	Output the ACL in JunOS format.

	Parameters:	
	replace – If set the ACL is wrapped in a
firewall { replace: ... } section.

	family – If set, the value is used to wrap the ACL in a
family inet { ...} section.

	
strip_comments()

	Strips all comments from ACL header and all terms.

	
trigger.acl.parser.literals(d)

	Longest match of all the strings that are keys of ‘d’.

	
class trigger.acl.parser.Policer(name, data)

	Container class for policer policy definitions. This is a dummy class for
now, that just passes it through as a string.

	
class trigger.acl.parser.PolicerGroup(format=None)

	Container for Policer objects. Juniper only.

	
trigger.acl.parser.S(prod)

	Wrap your grammar token in this to call your helper function with a list
of each parsed subtag, instead of the raw text. This is useful for
performing modifiers.

	Parameters:	prod – The parser product.

trigger.acl.queue

Database interface for automated ACL queue. Used primarily by load_acl and
acl` commands for manipulating the work queue.

>>> from trigger.acl.queue import Queue
>>> q = Queue()
>>> q.list()
(('dc1-abc.net.aol.com', 'datacenter-protect'), ('dc2-abc.net.aol.com',
'datacenter-protect'))

	
class trigger.acl.queue.Queue(verbose=True)

	Interacts with firewalls database to insert/remove items into the queue. You
may optionally suppress informational messages by passing verbose=False
to the constructor.

	Parameters:	verbose (Boolean) – Toggle verbosity

	
complete(device, acls)

	Integrated queue only.

Mark a device and associated ACLs as complete my updating loaded to
current timestampe. Migrated from clear_load_queue() in load_acl.

	
delete(acl, routers=None, escalation=False)

	Delete an ACL from the firewall database queue.

Attempts to delete from integrated queue. If ACL test fails, then
item is deleted from manual queue.

	
insert(acl, routers, escalation=False)

	Insert an ACL and associated devices into the ACL load queue.

Attempts to insert into integrated queue. If ACL test fails, then
item is inserted into manual queue.

	
list(queue='integrated', escalation=False)

	List items in the queue, defauls to integrated queue.

Valid queue arguments are ‘integrated’ or ‘manual’.

	
remove(acl, routers, escalation=False)

	Integrated queue only.

Mark an ACL and associated devices as “removed” (loaded=0). Intended
for use when performing manual actions on the load queue when
troubleshooting or addressing errors with automated loads. This leaves
the items in the database but removes them from the active queue.

trigger.acl.tools

Various tools for use in scripts or other modules. Heavy lifting from tools
that have matured over time have been moved into this module.

	
trigger.acl.tools.create_trigger_term(source_ips=[], dest_ips=[], source_ports=[], dest_ports=[], protocols=[], action=['accept'], name='generated_term')

	Constructs & returns a Term object from constituent parts.

	
trigger.acl.tools.create_access(terms_to_check, new_term)

	Breaks a new_term up into separate constituent parts so that they can be
compared in a check_access test.

Returns a list of terms that should be inserted.

	
trigger.acl.tools.check_access(terms_to_check, new_term, quiet=True, format='junos', acl_name=None)

	Determine whether access is permitted by a given ACL (list of terms).

Tests a new term against a list of terms. Return True if access in new term
is permitted, or False if not.

Optionally displays the terms that apply and what edits are needed.

	Parameters:	
	terms_to_check – A list of Term objects to check

	new_term – The Term object used for the access test

	quiet – Toggle whether output is displayed

	format – The ACL format to use for output display

	acl_name – The ACL name to use for output display

	
class trigger.acl.tools.ACLScript(acl=None, mode='insert', cmd='acl_script', show_mods=True, no_worklog=False, no_changes=False)

	Interface to generating or modifying access-lists. Intended for use in
creating command-line utilities using the ACL API.

	
trigger.acl.tools.process_bulk_loads(work, max_hits=1, force_bulk=False)

	Formerly “process –ones”.

Processes work dict and determines tuple of (prefix, site) for each device. Stores
tuple as a dict key in prefix_hits. If prefix_hits[(prefix, site)] is greater than max_hits,
remove all further matching devices from work dict.

By default if a device has no acls flagged as bulk_acls, it is not removed from the work dict.

	Example:

	
	Device ‘foo1-xyz.example.com’ returns (‘foo’, ‘xyz’) as tuple.

	This is stored as prefix_hits[(‘foo’, ‘xyz’)] = 1

	All further devices matching that tuple increment the hits for that tuple

	Any devices matching hit counter exceeds max_hits is removed from work dict

You may override max_hits to increase the num. of devices on which to load a bulk acl.
You may pass force_bulk=True to treat all loads as bulk loads.

	
trigger.acl.tools.get_bulk_acls()

	Returns a dict of acls with an applied count over settings.AUTOLOAD_BULK_THRESH

	
trigger.acl.tools.get_comment_matches(aclobj, requests)

	Given an ACL object and a list of ticket numbers return a list of matching comments.

	
trigger.acl.tools.write_tmpacl(acl, process_name='_tmpacl')

	Write a temporary file to disk from an Trigger acl.ACL object & return the filename

	
trigger.acl.tools.diff_files(old, new)

	Return a unified diff between two files

	
trigger.acl.tools.worklog(title, diff, log_string='updated by express-gen')

	Save a diff to the ACL worklog

	
trigger.acl.tools.insert_term_into_acl(new_term, aclobj, debug=False)

	Return a new ACL object with the new_term added in the proper place based
on the aclobj. Intended to recursively append to an interim ACL object
based on a list of Term objects.

It’s safe to assume that this function is incomplete pending better
documentation and examples.

	Parameters:	
	new_term – The Term object to use for comparison against aclobj

	aclobj – The original ACL object to use for creation of new_acl

Example:

import copy
terms_to_be_added is a list of Term objects that is to be added in
the "right place" into new_acl based on the contents of aclobj
original_acl = parse(open('acl.original'))
new_acl = copy.deepcopy(original_acl) # Dupe the original
for term in terms_to_be_added:
 new_acl = generate_new_acl(term, new_acl)

	
trigger.acl.tools.create_new_acl(old_file, terms_to_be_added)

	Given a list of Term objects call insert_term_into_acl() to determine
what needs to be added in based on the contents of old_file. Returns a new
ACL object.

 Copyright 2006-2013, AOL Inc.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	develop

 	1.3.1

 	1.3

 	1.2.4

 	1.2.3

 	1.2.2

 	1.2.1

 	1.2

 	1.1

 	1.0.0.100

 trigger.changemgmt — Change management library

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Trigger 1.3.1 documentation

trigger.changemgmt — Change management library

Abstract interface to bounce windows and moratoria.

	
class trigger.changemgmt.BounceStatus(status_name)

	An object that represents a bounce window risk-level status.

	green: Low risk

	yellow: Medium risk

	red: High risk

Objects stringify to ‘red’, ‘green’, or ‘yellow’, and can be compared
against those strings. Objects can also be compared against each other.
‘red’ > ‘yellow’ > ‘green’.

>>> green = BounceStatus('green')
>>> yellow = BounceStatus('yellow')
>>> print green
green
>>> yellow > green
True

	Parameters:	status_name – The colored risk-level status name.

	
class trigger.changemgmt.BounceWindow(status_by_hour=None, green=None, yellow=None, red=None, default='red')

	Build a bounce window of 24 BounceStatus objects.

You may either specify your own list of 24
BounceStatus objects using status_by_hour, or you
may omit this argument and specify your ‘green’, ‘yellow’, and ‘red’
risk levels by using hyphenated and comma-separated text strings.

You may use digits (“14”) or hyphenated ranges (“0-5”) and may join these
together using a comma (”,”) with or without spacing separating them. For
example “0-5, 14” will be parsed into [0, 1, 2, 3, 4, 5, 14].

The default color is used to fill in the gaps between the other colors,
so that the total is always 24 in the resultant list status objects.

>>> b = BounceWindow(green='0-3, 23', red='10', default='yellow')
>>> b.status()
<BounceStatus: yellow>
>>> b.next_ok('green')
datetime.datetime(2012, 12, 5, 4, 0, tzinfo=<UTC>)
>>> b.dump()
{0: <BounceStatus: green>,
 1: <BounceStatus: green>,
 2: <BounceStatus: green>,
 3: <BounceStatus: green>,
 4: <BounceStatus: yellow>,
 5: <BounceStatus: yellow>,
 6: <BounceStatus: yellow>,
 7: <BounceStatus: yellow>,
 8: <BounceStatus: yellow>,
 9: <BounceStatus: yellow>,
 10: <BounceStatus: red>,
 11: <BounceStatus: yellow>,
 12: <BounceStatus: yellow>,
 13: <BounceStatus: yellow>,
 14: <BounceStatus: yellow>,
 15: <BounceStatus: yellow>,
 16: <BounceStatus: yellow>,
 17: <BounceStatus: yellow>,
 18: <BounceStatus: yellow>,
 19: <BounceStatus: yellow>,
 20: <BounceStatus: yellow>,
 21: <BounceStatus: yellow>,
 22: <BounceStatus: yellow>,
 23: <BounceStatus: green>}

You may modify the global default fallback color by setting
BOUNCE_DEFAULT_COLOR in your settings.py.

Although the query API is generic and could accomodate any sort of bounce
window policy, this constructor knows only about AOL’s bounce windows,
which operate on “US/Eastern” time (worldwide), always change on hour
boundaries, and are the same every day. If that ever changes, only this
class will need to be updated.

End-users are not expected to create new BounceWindow objects;
instead, use bounce() or
bounce to get an object,
then query its methods.

	Parameters:	
	status_by_hour – (Optional) A list of 24 BounceStatus objects.

	green – Representative string of hours.

	yellow – Representative string of hours.

	red – Representative string of hours.

	default – The color used to fill in the gaps between other risk levels.

	
dump()

	Dump a mapping of hour to status

	
next_ok(status, when=None)

	Return the next time at or after the specified time (default now) that
it the bounce status will be at equal to or less than the given status.

For example, next_ok('yellow') will return the time that the bounce
window becomes ‘yellow’ or ‘green’. Returns UTC time.

	Parameters:	
	status – The colored risk-level status name.

	when – A datetime object.

	
status(when=None)

	Return a BounceStatus object for the specified
time or now.

	Parameters:	when – A datetime object.

	
trigger.changemgmt.bounce(device, default=BounceWindow(green='5-7', yellow='0-4, 8-15', red='16-23', default='red'))

	Return the bounce window for a given device.

	Parameters:	
	device – A NetDevice object.

	default – A BounceWindow object.

 Copyright 2006-2013, AOL Inc.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	develop

 	1.3.1

 	1.3

 	1.2.4

 	1.2.3

 	1.2.2

 	1.2.1

 	1.2

 	1.1

 	1.0.0.100

 trigger.cmds — Command execution library

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Trigger 1.3.1 documentation

trigger.cmds — Command execution library

This module abstracts the asynchronous execution of commands on multiple
network devices. It allows for integrated parsing and event-handling of return
data for rapid integration to existing or newly-created tools.

The Commando class is designed to be extended but can still be
used as-is to execute commands and return the results as-is.

Please see the source code for ShowClock class for a basic
example of one might create a subclass. Better documentation is in the works!

	
class trigger.cmds.Commando(devices=None, commands=None, creds=None, incremental=None, max_conns=10, verbose=False, timeout=30, production_only=True, allow_fallback=True, with_errors=True, force_cli=False)

	Execute commands asynchronously on multiple network devices.

This class is designed to be extended but can still be used as-is to execute
commands and return the results as-is.

At the bare minimum you must specify a list of devices to interact with.
You may optionally specify a list of commands to execute on those
devices, but doing so will execute the same commands on every device
regardless of platform.

If commands are not specified, they will be expected to be emitted by
the generate method for a given platform. Otherwise no commands will be
executed.

If you wish to customize the commands executed by device, you must define a
to_{vendor_name} method containing your custom logic.

If you wish to customize what is done with command results returned from a
device, you must define a from_{vendor_name} method containing your
custom logic.

	Parameters:	
	devices – A list of device hostnames or NetDevice objects

	commands – (Optional) A list of commands to execute on the devices.

	creds – (Optional) A 3-tuple of (username, password, realm). If only (username,
password) are provided, realm will be populated from
DEFAULT_REALM. If unset it will fetch from .tacacsrc.

	incremental – (Optional) A callback that will be called with an empty sequence upon
connection and then called every time a result comes back from the
device, with the list of all results.

	max_conns – (Optional) The maximum number of simultaneous connections to keep open.

	verbose – (Optional) Whether or not to display informational messages to the
console.

	timeout – (Optional) Time in seconds to wait for each command executed to return a
result. Set to None to disable timeout (not recommended).

	production_only – (Optional) If set, includes all devices instead of excluding any devices
where adminStatus is not set to PRODUCTION.

	allow_fallback – If set (default), allow fallback to base parse/generate methods when
they are not customized in a subclass, otherwise an exception is raised
when a method is called that has not been explicitly defined.

	with_errors – (Optional) Return exceptions as results instead of raising them. The
default is to always return them.

	force_cli – (Optional) Juniper only. If set, sends commands using CLI instead of
Junoscript.

	
errback(failure, device)

	The default errback. Overload for custom behavior but make sure it
always decrements the connections.

	Parameters:	
	failure – Usually a Twisted Failure instance.

	device – A NetDevice object

	
generate(device, commands=None, extra=None)

	Generate commands to be run on a device. If you don’t provide
commands to the class constructor, this will return an empty list.

Define a ‘to_{vendor_name}’ method to customize the behavior for each
platform.

	Parameters:	
	device – A NetDevice object

	commands – (Optional) A list of commands to execute on the device. If not
specified in they will be inherited from commands passed to the
class constructor.

	extra – (Optional) A dictionary of extra data to send to the generate method for the
device.

	
map_results(commands=None, results=None)

	Return a dict of {command: result, ...}

	
parse(results, device)

	Parse output from a device.

Define a ‘from_{vendor_name}’ method to customize the behavior for each
platform.

	Parameters:	
	results – The results of the commands executed on the device

	device – A NetDevice object

	
reactor_running

	Return whether reactor event loop is running or not

	
run()

	Nothing happens until you execute this to perform the actual work.

	
select_next_device(jobs=None)

	Select another device for the active queue.

Currently only returns the next device in the job queue. This is
abstracted out so that this behavior may be customized, such as for
future support for incremental callbacks.

	Parameters:	jobs – (Optional) The jobs queue. If not set, uses self.jobs.

	Returns:	A NetDevice object

	
store_error(device, error)

	A simple method for storing an error called by all default
parse/generate methods.

If you want to customize the default method for storing results,
overload this in your subclass.

	Parameters:	
	device – A NetDevice object

	error – The error to store. Anything you want really, but usually a Twisted
Failure instance.

	
store_results(device, results)

	A simple method for storing results called by all default
parse/generate methods.

If you want to customize the default method for storing results,
overload this in your subclass.

	Parameters:	
	device – A NetDevice object

	results – The results to store. Anything you want really.

	
to_juniper(device, commands=None, extra=None)

	This just creates a series of <command>foo</command> elements to
pass along to execute_junoscript()

	
class trigger.cmds.NetACLInfo(**args)

	Class to fetch and parse interface information. Exposes a config
attribute which is a dictionary of devices passed to the constructor and
their interface information.

Each device is a dictionary of interfaces. Each interface field will
default to an empty list if not populated after parsing. Below is a
skeleton of the basic config, with expected fields:

config {
 'device1': {
 'interface1': {
 'acl_in': [],
 'acl_out': [],
 'addr': [],
 'description': [],
 'subnets': [],
 }
 }
}

Interface field descriptions:

	addr:	List of IPy.IP objects of interface addresses

	acl_in:	List of inbound ACL names

	acl_out:	List of outbound ACL names

	description:	List of interface description(s)

	subnets:	List of IPy.IP objects of interface networks/CIDRs

Example:

>>> n = NetACLInfo(devices=['jm10-cc101-lab.lab.aol.net'])
>>> n.run()
Fetching jm10-cc101-lab.lab.aol.net
>>> n.config.keys()
[<NetDevice: jm10-cc101-lab.lab.aol.net>]
>>> dev = n.config.keys()[0]
>>> n.config[dev].keys()
['lo0.0', 'ge-0/0/0.0', 'ge-0/2/0.0', 'ge-0/1/0.0', 'fxp0.0']
>>> n.config[dev]['lo0.0'].keys()
['acl_in', 'subnets', 'addr', 'acl_out', 'description']
>>> lo0 = n.config[dev]['lo0.0']
>>> lo0['acl_in']; lo0['addr']
['abc123']
[IP('66.185.128.160')]

	
IPhost(addr)

	Given ‘172.20.1.4/24’, return IP(‘172.20.1.4/32’).

	
IPsubnet(addr)

	Given ‘172.20.1.4/24’, return IP(‘172.20.1.0/24’).

	
from_arista(data, device)

	Parse IOS config based on EBNF grammar

	
from_brocade(data, device)

	Parse IOS config based on EBNF grammar

	
from_cisco(data, device)

	Parse IOS config based on EBNF grammar

	
from_foundry(data, device)

	Parse IOS config based on EBNF grammar

	
from_juniper(data, device)

	Do all the magic to parse Junos interfaces

	
to_arista(dev, commands=None, extra=None)

	Similar to IOS, but:

	Arista has no “show conf” so we have to do “show run”

	The regex used in the CLI for Arista is more “precise” so we have to change the pattern a little bit compared to the on in generate_ios_cmd

	
to_brocade(dev, commands=None, extra=None)

	This is the “show me all interface information” command we pass to
IOS devices

	
to_cisco(dev, commands=None, extra=None)

	This is the “show me all interface information” command we pass to
IOS devices

	
to_foundry(dev, commands=None, extra=None)

	This is the “show me all interface information” command we pass to
IOS devices

	
to_juniper(dev, commands=None, extra=None)

	Generates an etree.Element object suitable for use with
JunoScript

	
class trigger.cmds.ShowClock(devices=None, commands=None, creds=None, incremental=None, max_conns=10, verbose=False, timeout=30, production_only=True, allow_fallback=True, with_errors=True, force_cli=False)

	A simple example that runs show clock and parses it to
datetime.datetime object.

	
from_brocade(results, device)

	Parse Brocade time. Brocade switches and routers behave
differently...

	
from_cisco(results, device)

	Parse Cisco time

 Copyright 2006-2013, AOL Inc.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	develop

 	1.3.1

 	1.3

 	1.2.4

 	1.2.3

 	1.2.2

 	1.2.1

 	1.2

 	1.1

 	1.0.0.100

 trigger.conf — Configuration & Settings module

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Trigger 1.3.1 documentation

trigger.conf — Configuration & Settings module

Settings and configuration for Trigger.

Values will be read from the module specified by the TRIGGER_SETTINGS
environment variable, and then from trigger.conf.global_settings; see the
global settings file for a list of all possible variables.

If TRIGGER_SETTINGS is not set, it will attempt to load from
/etc/trigger/settings.py and complains if it can’t. The primary public
interface for this module is the settings variable, which is a module
object containing the variables found in settings.py.

>>> from trigger.conf import settings
>>> settings.FIREWALL_DIR
'/data/firewalls'
>>> settings.REDIS_HOST
'127.0.0.1'

	
class trigger.conf.DummySettings

	Emulates settings and returns empty strings on attribute gets.

	
class trigger.conf.BaseSettings

	Common logic for settings whether set by a module or by the user.

 Copyright 2006-2013, AOL Inc.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	develop

 	1.3.1

 	1.3

 	1.2.4

 	1.2.3

 	1.2.2

 	1.2.1

 	1.2

 	1.1

 	1.0.0.100

 trigger.exceptions — Trigger’s Exceptions

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Trigger 1.3.1 documentation

trigger.exceptions — Trigger’s Exceptions

All custom exceptions used by Trigger. Where possible built-in exceptions are
used, but sometimes we need more descriptive errors.

	
exception trigger.exceptions.ACLError

	A base exception for all ACL-related errors.

	
exception trigger.exceptions.ACLNameError

	A base exception for all ACL naming errors.

	
exception trigger.exceptions.ACLSetError

	A base exception for all ACL Set errors.

	
exception trigger.exceptions.ActionError

	A base exception for all Term action errors.

	
exception trigger.exceptions.BadACLName

	Raised when an ACL object is assigned an invalid name.

	
exception trigger.exceptions.BadCounterName

	Raised when a counter name is invalid.

	
exception trigger.exceptions.BadForwardingClassName

	Raised when a forwarding-class name is invalid.

	
exception trigger.exceptions.BadIPSecSAName

	Raised when an IPSec SA name is invalid.

	
exception trigger.exceptions.BadMatchArgRange

	Raised when a match condition argument does not fall within a specified
range.

	
exception trigger.exceptions.BadPolicerName

	Raised when a policer name is invalid.

	
exception trigger.exceptions.BadRejectCode

	Raised when an invalid rejection code is specified.

	
exception trigger.exceptions.BadRoutingInstanceName

	Raised when a routing-instance name specified in an action is invalid.

	
exception trigger.exceptions.BadTermName

	Raised when an invalid name is assigned to a Term
object

	
exception trigger.exceptions.BadVendorName

	Raised when a Vendor object has a problem with the name.

	
exception trigger.exceptions.CommandFailure

	Raised when a command fails to execute, such as when it results in an
error.

	
exception trigger.exceptions.CommandTimeout

	Raised when a command times out while executing.

	
exception trigger.exceptions.CommandoError

	A base exception for all Commando-related errors.

	
exception trigger.exceptions.ConnectionFailure

	Raised when a connection attempt totally fails.

	
exception trigger.exceptions.ImproperlyConfigured

	Raised when something is improperly... configured...

	
exception trigger.exceptions.InvalidACLSet

	Raised when an invalid ACL set is specified.

	
exception trigger.exceptions.IoslikeCommandFailure

	Raised when a command fails on an IOS-like device.

	
exception trigger.exceptions.JunoscriptCommandFailure(tag)

	Raised when a Junoscript command fails on a Juniper device.

	
exception trigger.exceptions.LoaderFailed

	Raised when a metadata loader failed to load from data source.

	
exception trigger.exceptions.LoginFailure

	Raised when authentication to a remote system fails.

	
exception trigger.exceptions.LoginTimeout

	Raised when login to a remote systems times out.

	
exception trigger.exceptions.MatchError

	A base exception for all errors related to Term
Matches objects.

	
exception trigger.exceptions.MissingACLName

	Raised when an ACL object is missing a name.

	
exception trigger.exceptions.MissingPlatform

	Raised when a specific device platform is not supported.

	
exception trigger.exceptions.MissingTermName

	Raised when a an un-named Term is output to a format that requires Terms to
be named (e.g. Juniper).

	
exception trigger.exceptions.NetDeviceError

	A base exception for all NetDevices related errors.

	
exception trigger.exceptions.NetScreenError

	A general exception for NetScreen devices.

	
exception trigger.exceptions.NetScreenParseError

	Raised when a NetScreen policy cannot be parsed.

	
exception trigger.exceptions.NetscalerCommandFailure

	Raised when a command fails on a NetScaler device.

	
exception trigger.exceptions.NotificationFailure

	Raised when a notification fails and has not been silenced.

	
exception trigger.exceptions.ParseError(reason, line=None, column=None)

	Raised when there is an error parsing/normalizing an ACL that tries to tell
you where it failed.

	
exception trigger.exceptions.SSHConnectionLost(code, desc)

	Raised when an SSH connection is lost for any reason.

	
exception trigger.exceptions.TriggerError

	A base exception for all Trigger-related errors.

	
exception trigger.exceptions.TwisterError

	A base exception for all errors related to Twister.

	
exception trigger.exceptions.UnknownActionName

	Raised when an action assigned to a ~trigger.acl.parser.Term` object is unknown.

	
exception trigger.exceptions.UnknownMatchArg

	Raised when an unknown match argument is specified.

	
exception trigger.exceptions.UnknownMatchType

	Raised when an unknown match condition is specified.

	
exception trigger.exceptions.UnsupportedVendor

	Raised when a vendor is not supported by Trigger.

	
exception trigger.exceptions.VendorSupportLacking

	Raised when a feature is not supported by a given vendor.

 Copyright 2006-2013, AOL Inc.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	develop

 	1.3.1

 	1.3

 	1.2.4

 	1.2.3

 	1.2.2

 	1.2.1

 	1.2

